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Maximization of a Function of 

One Variable 
• Economic theories assume that  

– An economic agent is seeking to find the 

optimal value of some function 

• Consumers seek to maximize utility 

• Firms seek to maximize profit 

• Simple example, π = f(q)   

– Manager of a firm wants to maximize 

profits, π 

• The profits (π) received depend only on the 

quantity (q) of the good sold 
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2.1 

Hypothetical Relationship between Quantity Produced and 

Profits 

If a manager wishes to produce the level of output that maximizes profits, then q* 

should be produced. Notice that at q*, dπ/dq = 0. 

  = f(q) 
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Maximization of a Function of 

One Variable 
• Vary q to see where maximum profit 

occurs 

– An increase from q1 to q2 leads to a rise in 
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Maximization of a Function of 

One Variable 
• If output is increased beyond q*, profit will 

decline 

– An increase from q* to q3 leads to a drop 

in  
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Maximization of a Function of 

One Variable 
• Derivatives 

– The derivative of  = f(q) is the limit of 

/q for very small changes in q  

– Is the slope of the curve 

– The value depends on the value of q1 
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Maximization of a Function of 

One Variable 
• Value of a derivative at a point  

– The evaluation of the derivative at the 

point q = q1 can be denoted 
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Maximization of a Function of 

One Variable 
• First-order condition for a maximum 

– For a function of one variable to attain its 

maximum value at some point, the 

derivative at that point must be zero 
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Maximization of a Function of 

One Variable 
• The first order condition (d/dq)  

– Is a necessary condition for a maximum 

– But it is not a sufficient condition 

• The second order condition 

– In order for q* to be the optimum, 
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- At q*, d/dq must be decreasing  

– The derivative of d/dq must be negative at q* 
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2.2 

Two Profit Functions That Give Misleading Results If the First 

Derivative Rule Is Applied Uncritically 

In (a), the application of the first derivative rule would result in point qa* being chosen. This 

point is in fact a point of minimum profits. Similarly, in (b), output level qb* would be 

recommended by the first derivative rule, but this point is inferior to all outputs greater than 

qb* . This demonstrates graphically that finding a point at which the derivative is equal to 0 is 

a necessary, but not a sufficient, condition for a function to attain its maximum value. 
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Maximization of a Function of 

One Variable 
• Second derivative 

– The derivative of a derivative 

– Can be denoted by: 
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Maximization of a Function of 

One Variable 
• The second order condition 

– To represent a (local) maximum is: 
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Rules for Finding Derivatives 
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Rules for Finding Derivatives 

• Suppose that f(x) and g(x) are two 

functions of x and f’(x) and g’(x) exist 

• Then 
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Rules for Finding Derivatives 

• If y = f(x) and x = g(z) and if both f’(x) and 

g’(x) exist, then: 
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– This is called the chain rule   

– Allows us to study how one variable (z) 

affects another variable (y) through its 

influence on some intermediate variable (x) 
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Rules for Finding Derivatives 

• Some examples of the chain rule include: 

© 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as 

permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use. 

   

2 2 2

2 2

ln ( ) ln ( ) ( ) 1 1
11.  

( )

( )
10.  

[ln( )] [ln( )] ( ) 1 2
12.  2

(

(

)

)

ax ax
ax ax

d ax d ax d ax
a

dx d ax dx ax

d x d x d x
x

dx d x dx x

x

de de d ax
e a ae

dx d ax d

x

x
 

   

 

  





 

16 



2.1 Profit Maximization 

• Suppose that the relationship between profit 

and output is 

 = 1,000q - 5q2 

• The first order condition for a maximum is 

d/dq = 1,000 - 10q = 0 

q* = 100 

• Since the second derivative is always -10, 

then q = 100 is a global maximum 

© 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as 

permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use. 
17 



Functions of Several Variables 

• Most goals of economic agents depend 

on several variables 

– Trade-offs must be made 

• The dependence of one variable (y) on a 

series of other variables (x1,x2,…,xn) is 

denoted by 
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Functions of Several Variables 

• Partial derivatives 

– Partial derivative of y with respect to x1: 
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Calculating Partial Derivatives 
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Functions of Several Variables 

• Partial derivatives 

– Are the mathematical expression of the 

ceteris paribus assumption 

– Show how changes in one variable affect 

some outcome when other influences are 

held constant 

• We must be concerned with units of 

measurement 
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Functions of Several Variables 

• Elasticity 

– Measures the proportional effect of a 

change in one variable on another 

– Unit free 

– Of y with respect to x is 
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2.2 Elasticity and Functional Form 

• For: y = a + bx + other terms 

• The elasticity is: 
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• ey,x is not constant 

– It is important to note the point at which the 

elasticity is to be computed 

23 



2.2 Elasticity and Functional Form 

• For y = axb  

• The elasticity is a constant: 
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• Elasticities can be calculated through 

logarithmic differentiation 
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Functions of Several Variables 

• Second-order partial derivatives 

– The partial derivative of a partial derivative 
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Second-order partial derivatives 
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Functions of Several Variables 

• Young’s theorem 

– Under general conditions 

– The order in which partial differentiation is 

conducted to evaluate second-order 

partial derivatives does not matter 

  fij= fji 
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Functions of Several Variables 

• Second-order partials 

– Play an important role in many economic 

theories 

– A variable’s own second-order partial, fii 

• Shows how y/xi changes as the value of xi 

increases 

• fii < 0 indicates diminishing marginal 

effectiveness 
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Functions of Several Variables 

• The chain rule with many variables 

–  y = f(x1,x2,x3) 

• Each of these x’s is itself a function of a single 

parameter, a 

–  y = f[x1(a),x2(a),x3(a)]   

– How a change in a affects the value of y: 
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Functions of Several Variables 

• If x3 = a, then: y = f[x1(a),x2(a),a]   

– The effect of a on y: 

• A direct effect (which is given by fa 

• An indirect effect that operates only through 

the ways in which a affects the x’s 
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Functions of Several Variables 

• Implicit functions 

– If the value of a function is held constant 

• An implicit relationship is created among the 

independent variables that enter into the 

function 

• The independent variables can no longer take 

on any values 

– But must instead take on only that set of values 

that result in the function’s retaining the required 

value 
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Functions of Several Variables 

• Implicit functions  

– Ability to quantify the trade-offs inherent in 

most economic models 

•  y = f(x1,x2); Implicit function: x2=g(x1) 
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2.3  Using the Chain Rule 

• A pizza fanatic 

• Each week, he consumes three kinds of pizza, 

denoted by x1, x2, and x3  

• Cost of type 1 pizza is p per pie 

• Cost of type 2 pizza is 2p 

• Cost of type 3 pizza is 3p 

• Allocates $30 each week to each type of pizza 

• How the total number of pizzas purchased is 

affected by the underlying price p 
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2.3  Using the Chain Rule 

• Quantity purchased: 

•  x1=30/p; x2=30/2p; x3=30/3p 

• Total pizza purchases: 

•  y = f[x1(p), x2(p), x3(p)] = x1(p) + x2(p) + x3(p) 

• Applying the chain rule: 
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2.4  A Production Possibility Frontier—Again 

• A production possibility frontier for two goods 

of the form  

  x2+0.25y2=200 

• The implicit function: 
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Maximization of Functions of 

Several Variables 
• Suppose an agent wishes to maximize 

   y = f (x1,x2,…,xn) 

– The change in y from a change in x1 

(holding all other x’s constant) is 

• Equal to the change in x1 times the slope 

(measured in the x1 direction) 
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Maximization of Functions of 

Several Variables 
• First-order conditions for a maximum 

– Necessary condition for a maximum of the 

function f(x1,x2,…,xn) is that dy = 0 for any 

combination of small changes in the x’s: 

  f1=f2=…=fn=0 

• Critical point of the function 

– Not sufficient to ensure a maximum 

• Second-order conditions, fii < 0 

– Second partial derivatives must be negative 
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2.5  Finding a Maximum 

• Suppose that y is a function of x1 and x2 

y = - (x1 - 1)2 - (x2 - 2)2 + 10 

y = - x1
2 + 2x1 - x2

2 + 4x2 + 5 

• First-order conditions imply that 
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The Envelope Theorem 

• The envelope theorem  

– How the optimal value for a function changes 

when a parameter of the function changes 

• A specific example: y = -x2 + ax 

– Represents a family of inverted parabolas  

• For different values of a  

– Is a function of x only 

• If a is assigned a specific value 

• Can calculate the value of x that maximizes y  
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2.1 

Optimal values of y and x for alternative values of a in y=-x2+ax 
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2.3 

Illustration of the Envelope Theorem 

The envelope theorem 

states that the slope of the 

relationship between y (the 

maximum value of y) and 

the parameter a can be 

found by calculating the 

slope of the auxiliary 

relationship found by 

substituting the respective 

optimal values for x into the 

objective function and 

calculating ∂y/∂a. 
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The Envelope Theorem 

• If we are interested in how y* changes as 

a changes 

– Calculate the slope of y directly 

– Hold x constant at its optimal value and 

calculate y/a directly (the envelope 

theorem) 
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The Envelope Theorem 

• Calculate the slope of y directly 

– Must solve for the optimal value of x for 

any value of a 

dy/dx = -2x + a = 0;  x* = a/2 

– Substituting, we get 

y* = -(x*)2 + a(x*) = -(a/2)2 + a(a/2);  

y* = -a2/4 + a2/2 = a2/4 

• Therefore, dy*/da = 2a/4 = a/2 
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The Envelope Theorem 

• Using the envelope theorem 

– For small changes in a, dy*/da can be 

computed by holding x at x* and 

calculating y/a directly from y 

   y/ a = x 

– Holding x = x* 

   y/ a = x* = a/2 
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The Envelope Theorem 

• The envelope theorem  

– The change in the optimal value of a 

function with respect to a parameter of 

that function 

– Can be found by partially differentiating 

the objective function while holding x (or 

several x’s) at its optimal value 
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The Envelope Theorem 

• Many-variable case 

–  y is a function of several variables  

  y = f(x1,…xn,a) 

– Finding an optimal value for y: solve n 

first-order equations:  

 y/xi = 0    (i = 1,…,n) 

– Optimal values for these x’s would be a 
function of a 

  x1* = x1*(a); x2* = x2*(a); …; xn* = xn*(a) 
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The Envelope Theorem 

• Many-variable case 

– Substituting into the original objective 

function gives us the optimal value of y 

(y*) 

 y* = f [x1*(a), x2*(a),…,xn*(a),a] 

– Differentiating yields 
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2.6  The Envelope Theorem: Health Status Revisited 

• y = - (x1 - 1)2 - (x2 - 2)2 + 10 

• We found: x1*=1, x2*=2, and y*=10 

• For y = - (x1 - 1)2 - (x2 - 2)2 + a 

•  x1*=1, x2*=2 

•  y*=a and dy*/da = 1 

• Using the envelope theorem:  

 

 

© 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as 

permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use. 

*
1

dy f

da a


 


48 



Constrained Maximization 

• What if all values for the x’s are not 

feasible? 

– The values of x may all have to be > 0 

– A consumer’s choices are limited by the 

amount of purchasing power available 

• Lagrange multiplier method 

– One method used to solve constrained 

maximization problems 
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Lagrange Multiplier Method 

• Lagrange multiplier method 

– Suppose that we wish to find the values of 

x1, x2,…, xn that maximize:  

  y = f(x1, x2,…, xn) 

– Subject to a constraint: g(x1, x2,…, xn) = 0 

• The Lagrangian expression 

 ℒ = f(x1, x2,…, xn ) + g(x1, x2,…, xn)  

– is called the Lagrange multiplier 

–ℒ = f, because g(x1, x2,…, xn) = 0 
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Lagrange Multiplier Method 

• First-order conditions  

– Conditions for a critical point for the 

function ℒ  

ℒ /x1 = f1 + g1 = 0 

ℒ /x2 = f2 + g2 = 0 

… 

ℒ /xn = fn + gn = 0 

ℒ / = g(x1, x2,…, xn) = 0 
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Lagrange Multiplier Method 

• First-order conditions  

– Can generally be solved for x1, x2,…, xn 

and  

– The solution will have two properties: 

• The x’s will obey the constraint 

• These x’s will make the value of ℒ (and 

therefore f) as large as possible 
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Lagrange Multiplier Method 

• The Lagrangian multiplier ()  

– Important economic interpretation 

– The first-order conditions imply that 

  f1/-g1 = f2/-g2 =…= fn/-gn =  

• The numerators measure the marginal benefit 

of one more unit of xi  

• The denominators reflect the added burden 

on the constraint of using more xi 
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Lagrange Multiplier Method 

• The Lagrangian multiplier ()  

– At the optimal xi’s, the ratio of the marginal 

benefit to the marginal cost of xi should be 

the same for every xi 

– is the common cost-benefit ratio for all xi 
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Lagrange Multiplier Method 

• The Lagrangian multiplier ()  

– A high value of  indicates that each xi has 

a high cost-benefit ratio 

– A low value of  indicates that each xi has 

a low cost-benefit ratio 

– = 0 implies that the constraint is not 

binding 
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Constrained Maximization 

• Duality 

– Any constrained maximization problem 

has a dual problem in constrained 

minimization  

• Focuses attention on the constraints in the 

original problem 
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Constrained Maximization 

• Individuals maximize utility subject to a 

budget constraint 

– Dual problem: individuals minimize the 

expenditure needed to achieve a given 

level of utility 

• Firms minimize the cost of inputs to 

produce a given level of output 

– Dual problem: firms maximize output for a 

given cost of inputs purchased 
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2.7 Constrained Maximization: Health status yet again 

• Individual’s goal is to maximize 

•  y=-x1
2+2x1-x2

2+4x2+5 

• With the constraint: x1+x2=1 or 1-x1-x2=0 

• Set up the Lagrangian expression: 

• ℒ = =-x1
2+2x1-x2

2+4x2+5 + (1-x1-x2) 

• First-order conditions: 

ℒ /x1 = -2x1+2- = 0 

ℒ /x2 = -2x2+4- = 0 

ℒ / = 1-x1-x2 = 0 

• Solution: x1=0, x2=1, =2, y=8 
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2.8 Optimal Fences and Constrained Maximization 

• Suppose a farmer had a certain length of 

fence (P) 

• Wished to enclose the largest possible 

rectangular area – with x and y the lengths of the 

sides 

• Choose x and y to maximize the area (A = x·y)  

• Subject to the constraint that the perimeter is 

fixed at P = 2x + 2y 
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2.8 Optimal Fences and Constrained Maximization 

• The Lagrangian expression:  

ℒ = x·y + (P - 2x - 2y) 

• First-order conditions 

ℒ /x = y - 2 = 0 

ℒ /y = x - 2 = 0 

ℒ / = P - 2x - 2y = 0 

• y/2 = x/2 = , then x=y, the field should be 

square 

• x = y and y = 2, then 

x = y = P/4 and  = P/8 
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2.8 Optimal Fences and Constrained Maximization 

• Interpretation of the Lagrange multiplier 

•  suggests that an extra yard of fencing would 

add P/8 to the area 

• Provides information about the implicit value of 

the constraint 

• Dual problem 

• Choose x and y to minimize the amount of fence 

required to surround the field 

minimize P = 2x + 2y subject to A = x·y 

• Setting up the Lagrangian:  

  ℒ D = 2x + 2y + D(A - xy) 
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2.8 Optimal Fences and Constrained Maximization 

• Dual problem 

• First-order conditions: 

ℒ D/x = 2 - D·y = 0 

ℒ D/y = 2 - D·x = 0 

ℒ D/D = A - x·y = 0 

• Solving, we get: x = y = A1/2 

• The Lagrangian multiplier D = 2A-1/2 
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Envelope Theorem in Constrained 

Maximization Problems 
• Suppose that we want to maximize 

  y = f(x1,…,xn;a) 

– Subject to the constraint: g(x1,…,xn;a) = 0  

• One way to solve  

– Set up the Lagrangian expression  

– Solve the first-order conditions 

• Alternatively, it can be shown that 

  dy*/da = ℒ /a(x1*,…,xn*;a) 
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Inequality Constraints 

• Maximize y = f(x1,x2) subject to 

 g(x1,x2)  0, x1  0, and x2  0 

• Slack variables 

– Introduce three new variables (a, b, and c) 

that convert the inequalities into equalities 

– Square these new variables   

g(x1,x2) - a
2 = 0; x1 - b

2 = 0; and x2 - c
2 = 0 

– Any solution that obeys these three equality 

constraints will also obey the inequality constraints 
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Inequality Constraints 

• Maximize y = f(x1,x2) subject to 

 g(x1,x2)  0, x1  0, and x2  0 

• Lagrange multipliers 

ℒ = f(x1,x2)+ 1[g(x1,x2) - a
2]+2[x1 - b

2]+ 3[x2 - c
2] 

– There will be 8 first-order conditions 
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ℒ /x2 = f1 + 1g2 + 3 = 0 

ℒ /a = -2a1 = 0 

ℒ /b = -2b2 = 0 

ℒ /c = -2c3 = 0 

ℒ /1 = g(x1,x2) - a
2 = 0 

ℒ /2 = x1 - b
2 = 0 

ℒ /3 = x2 - c
2 = 0 
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Inequality Constraints 

• Complementary slackness 

– According to the third condition, either a or 

1 = 0 

• If a = 0, the constraint g(x1,x2) holds exactly 

• If 1 = 0, the availability of some slackness of 

the constraint implies that its value to the 

objective function is 0 

– Similar complementary slackness 

relationships also hold for x1 and x2 
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Inequality Constraints 

• Complementary slackness 

– These results are sometimes called Kuhn-

Tucker conditions 

• Show that solutions to problems involving 

inequality constraints will differ from those 

involving equality constraints in rather simple 

ways 

– Allows us to work primarily with constraints 

involving equalities 
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Second-Order Conditions and 

Curvature 
• Functions of one variable, y = f(x) 

– A necessary condition for a maximum: 

dy/dx = f ’(x) = 0 

•  y must be decreasing for movements away 

from it 

– The total differential measures the change 

in y: dy = f ’(x) dx 

• To be at a maximum, dy must be decreasing 

for small increases in x 
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Second-Order Conditions and 

Curvature 
• Functions of one variable, y = f(x) 

– To see the changes in dy, we must use 

the second derivative of y 

© 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as 

permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use. 

2 2[ '( ) ]
( ) "( ) "( )

d f x dx
d dy d y dx f x dx dx f x dx

dx
     

69 

• Since d 2y < 0 , f ’’(x)dx2 < 0 

• Since dx2 must be > 0, f ’’(x) < 0 

• This means that the function f must have a 

concave shape at the critical point 

 

 



2.9  Profit Maximization Again 

• Finding the maximum of:  = 1,000q - 5q2 

• First-order condition:  

• d/dq=1,000 – 10q = 0, so q*=100 

• Second derivative of the function 

• d2/dq2= – 10 < 0 

• Hence the point q*=100 obeys the sufficient 

conditions for a local maximum 
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Second-Order Conditions and 

Curvature 
• Functions of two variables, y = f(x1, x2) 

– First order conditions for a maximum: 

y/x1 = f1 = 0 

y/x2 = f2 = 0 

– f1 and f2 must be diminishing at the critical 

point 

– Conditions must also be placed on the 

cross-partial derivative (f12 = f21) 
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Second-Order Conditions and 

Curvature 
• The total differential of y: dy = f1 dx1 + f2 dx2 

• The differential:  

d 2y = (f11dx1 + f12dx2)dx1 + (f21dx1 + f22dx2)dx2 

d 2y = f11dx1
2 + f12dx2dx1 + f21dx1 dx2 + f22dx2

2 

• By Young’s theorem, f12 = f21 and  

d 2y = f11dx1
2 + 2f12dx1dx2 + f22dx2

2 

d 2y = f11dx1
2 + 2f12dx1dx2 + f22dx2

2  

– d 2y < 0 for any dx1 and dx2, if f11<0 and f22<0  

– If neither dx1 nor dx2 is zero, then d 2y < 0 only if 

f11 f22 - f12
2 > 0 
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2.10  Second-Order Conditions: Health status 

• y =f(x1,x2)= - x1
2 + 2x1 - x2

2 + 4x2 + 5 

• First-order conditions 

•  f1=-2x1+2=0 and f2=-2x2+4=0 

• Or: x1*=1, x2*=2 

• Second-order partial derivatives 

•  f11=-2 

•  f22=-2 

•  f12=0 
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Second-Order Conditions and 

Curvature 
• Concave functions 

– f11 f22 - f12
2 > 0  

– Have the property that they always lie 

below any plane that is tangent to them 

• The plane defined by the maximum value of 

the function is simply a special case of this 

property 
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Second-Order Conditions and 

Curvature 

• Constrained maximization 

– Choose x1 and x2 to maximize: y = f(x1, x2) 

– Linear constraint: c - b1x1 - b2x2 = 0 

– The Lagrangian: ℒ = f(x1, x2) + (c - b1x1 - 

b2x2) 

– The first-order conditions: 

f1 - b1 = 0, f2 - b2 = 0,  

and c - b1x1 - b2x2 = 0 
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Second-Order Conditions and 

Curvature 

• Constrained maximization 

– Use the “second” total differential:  

d 2y = f11dx1
2 + 2f12dx1dx2 + f22dx2

2 

• Only values of x1 and x2 that satisfy the 

constraint can be considered valid 

alternatives to the critical point 

– Total differential of the constraint 

-b1 dx1 - b2 dx2 = 0, dx2 = -(b1/b2)dx1 

• Allowable relative changes in x1 and x2 
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Second-Order Conditions and 

Curvature 

• Constrained maximization 

– First-order conditions imply that f1/f2 = 

b1/b2, we get: dx2 = -(f1/f2) dx1 

– Since: d 2y = f11dx1
2 + 2f12dx1dx2 + f22dx2

2 

– Substitute for dx2 and get 

d 2y = f11dx1
2 - 2f12(f1/f2)dx1

2 + f22(f1
2/f2

2)dx1
2 

– Combining terms and rearranging, we get 

d 2y = f11 f2
2

 - 2f12f1f2 + f22f1
2 [dx1

2/ f2
2] 
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Second-Order Conditions and 

Curvature 

• Constrained maximization 

– Therefore, for d 2y < 0, it must be true that 

f11 f2
2

 - 2f12f1f2 + f22f1
2 < 0 

• This equation characterizes a set of functions 

termed quasi-concave functions 

• Quasi-concave functions 

– Any two points within the set can be joined 

by a line contained completely in the set 
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2.11  Concave and Quasi-Concave Functions 

• y = f(x1,x2) = (x1x2)
k 

• Where x1 > 0, x2 > 0, and k > 0 

• No matter what value k takes, this function is 

quasi-concave 

• Whether or not the function is concave 

depends on the value of k 

• If k < 0.5, the function is concave 

• If k > 0.5, the function is convex 
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2.4 

Concave and Quasi-Concave Functions 

In all three cases these functions are quasi-concave. For a fixed y, their level 

curves are convex. But only for k =0.2 is the function strictly concave. The case k 

= 1.0 clearly shows nonconcavity because the function is not below its tangent 

plane. 
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Homogeneous Functions 

• A function f(x1,x2,…xn) is said to be 

homogeneous of degree k if 

f(tx1,tx2,…txn) = tk f(x1,x2,…xn) 

– When k = 1, a doubling of all of its 

arguments doubles the value of the 

function itself 

– When k = 0, a doubling of all of its 

arguments leaves the value of the function 

unchanged 
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Homogeneous Functions 

• If a function is homogeneous of degree k 

– The partial derivatives of the function will 

be homogeneous of degree k-1 

• Euler’s theorem, homogeneous function 

– Differentiate the definition for homogeneity 

with respect to the proportionality factor t  

ktk-1f(x1,…,xn) = x1f1(tx1,…,txn) + … + xnfn(x1,…,xn) 

• There is a definite relationship between the 

value of the function and the values of its 

partial derivatives 
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Homogeneous Functions 

• A homothetic function 

– Is one that is formed by taking a 

monotonic transformation of a 

homogeneous function 

– They generally do not possess the 

homogeneity properties of their underlying 

functions 
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Homogeneous Functions 

• Homogeneous and homothetic functions 

– The implicit trade-offs among the variables 

in the function  

– Depend only on the ratios of those 

variables, not on their absolute values 

• Two-variable function, y=f(x1,x2)   

– The implicit trade-off between x1 and x2 is: 

dx2/dx1 = -f1/f2 

– f is homogeneous of degree k 
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Homogeneous Functions 

• Two-variable function, y=f(x1,x2)   

– Its partial derivatives will be homogeneous 

of degree k-1 

– The implicit trade-off between x1 and x2 is 
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2.12  Cardinal and Ordinal Properties 

• Function f(x1,x2)=(x1x2)
k 

• Quasi-concavity [an ordinal property] - preserved 

for all values of k 

• Is concave [a cardinal property] - only for a 

narrow range of values of k 

• Many monotonic transformations destroy the 

concavity of f 

• A proportional increase in the two arguments: 

f(tx1,tx2)=t2k x1x2 = t2k f(x1,x2) 

• Degree of homogeneity - depends on k 

• Is homothetic because  
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Integration 

• Integration is the inverse of differentiation 

– Let F(x) be the integral of f(x) 

– Then f(x) is the derivative of F(x) 
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Integration 

• Calculation of antiderivatives 

1. Creative guesswork  

• What function will yield f(x) as its derivative? 

• Use differentiation to check your answer 

2. Change of variable  

• Redefine variables to make the function 

easier to integrate  

3. Integration by parts 
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Integration 

• Integration by parts: duv = udv + vdu  

– For any two functions u and v 
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Integration 

• Definite integrals 

– To sum up the area under a graph of a 

function over some defined interval 

• Area under f(x) from x = a to x = b 
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2.5 

Definite Integrals Show the Areas Under the Graph of a 

Function 

Definite integrals measure the area under a curve by summing rectangular areas 

as shown in the graph. The dimension of each rectangle is f(x)dx. 
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Integration 

• Fundamental theorem of calculus 

– Directly ties together the two principal 

tools of calculus: derivatives and integrals 

– Used to illustrate the distinction between 

‘‘stocks’’ and ‘‘flows 
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2.13  Stocks and Flows 

• Net population increase, f(t)=1,000e0.02t 

• “Flow” concept 

• Net population change - is growing at the rate of 

2 percent per year 

• How much in total the population (“stock” 

concept) will increase within 50 years: 
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2.13  Stocks and Flows 

• Total costs: C(q)=0.1q2+500 

•  q – output during some period 

• Variable costs: 0.1q2 

• Fixed costs: 500 

• Marginal costs MC = dC(q)/dq=0.2q 

• Total costs for q=100  

• Fixed cost (500) + Variable cost 
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Differentiating a Definite Integral 

1. Differentiation with respect to the 

variable of integration 

– A definite integral has a constant value 

– Hence its derivative is zero 
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Differentiating a Definite Integral 

2. Differentiation with respect to the upper 

bound of integration  

– Changing the upper bound of integration 

will change the value of a definite integral 
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Differentiating a Definite Integral 

2. Differentiation with respect to the upper 

bound of integration  

– If the upper bound of integration is a 

function of x, 
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Differentiating a Definite Integral 

3. Differentiation with respect to another 

relevant variable  

– Suppose we want to integrate f(x,y) with 

respect to x 

• How will this be affected by changes in y? 
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Dynamic Optimization 

• Some optimization problems involve 

multiple periods 

– Need to find the optimal time path for a 

variable that succeeds in optimizing some 

goal 

– Decisions made in one period affect 

outcomes in later periods 

 

99 
© 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as 

permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use. 



Dynamic Optimization 

• Find the optimal path for x(t)  

– Over a specified time interval [t0,t1] 

– Changes in x are governed by 
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   , ,

dx t
g x t c t t

dt
   

• c(t) is used to ‘‘control’’ the change in x(t) 

– Each period: derive value from x and c 

from f [x(t),c(t),t]  



Dynamic Optimization 

• Find the optimal path for x(t)  

– Each period: derive value from x and c 

from f [x(t),c(t),t]  

– Optimize 
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• There may also be endpoint constraints: 

x(t0) = x0 and x(t1) = x1  



Dynamic Optimization 

• The maximum principle 

– At a single point in time, the decision 

maker must be concerned with 

• The current value of the objective function 

• The implied change in the value of x(t) from 

its current value of (t)x(t) given by 
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Dynamic Optimization 

• The maximum principle 

– At any time t, a comprehensive measure 

of the value of concern to the decision 

maker is: 
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• Represents both the current benefits being 

received and the instantaneous change in the 

value of x 



Dynamic Optimization 

• The maximum principle 

– The two optimality conditions 
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Dynamic Optimization 

• The maximum principle 

– The 1st condition:  

• Present gains from c must be balanced 

against future costs 

– The 2nd condition:  

• The current gain from more x must be 

weighed against the declining future value of 

x 
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2.14  Allocating a Fixed Supply 

• Inherited 1,000 bottles of wine 

• Drink them bottles over the next 20 years 

• Maximize the utility  

• Utility function for wine is given by u[c(t)] = ln c(t) 

• Diminishing marginal utility: u’ > 0, u” < 0 

• Maximize  
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2.14  Allocating a Fixed Supply 

• Let x(t) = the number of bottles of wine 

remaining at time t 

• Constrained by x(0) = 1,000 and x(20) = 0 

• The differential equation determining the 

evolution of x(t): dx(t)/dt=-c(t) 

• The current value Hamiltonian expression  
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2.14  Allocating a Fixed Supply 

• For the utility function: 
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2.14  Allocating a Fixed Supply 
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Mathematical Statistics 

• A random variable  

– Describes the outcomes from an 

experiment subject to chance 

– Discrete (roll of a die) 

– Continuous (outside temperature) 

• e.g., flipping a coin 
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Mathematical Statistics 

• Probability density function (PDF)  

– For any random variable  

– Shows the probability that each outcome 

will occur 

– The probabilities specified by the PDF 

must sum to 1 
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2.6 a Binomial Distribution 

Four Common Probability Density Functions 
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2.6 b Uniform Distribution 

Four Common Probability Density Functions 
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2.6 c Exponential 

Distribution Four Common Probability Density Functions 
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2.6 d   Normal 

Distribution Four Common Probability Density Functions 
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Mathematical Statistics 

• Expected value of a random variable  

– The numerical value that the random 

variable might be expected to have, on 

average 

– Measure of central tendency 
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Mathematical Statistics 

• Expected value of a random variable  

– Extended to function of random variables 
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Mathematical Statistics 

• Expected value of a random variable  

– Phrased in terms of the cumulative 

distribution function (CDF) F(x)  

• F(x) represents the probability that the 

random variable t is less than or equal to x  
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2.15   Expected Values of a Few Random Variables 
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Mathematical Statistics 

• Variance 

– A measure of dispersion 

– The expected squared deviation of a 

random variable from its expected value 
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Mathematical Statistics 

• Variance, Var(x) 

– A measure of dispersion 

– The expected squared deviation of a 

random variable from its expected value 

• Standard deviation, σ 

– The square root of the variance 
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2.16 Variances and Standard Deviations for 

Simple Random Variables 
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2.16 Variances and Standard Deviations for 

Simple Random Variables 

• Standardizing the Normal 

• If the random variable x has a standard Normal 

PDF 

• It will have an expected value of 0  

• And a standard deviation of 1 

• Linear transformation y =σx + μ  

• Used to give this random variable any desired 

expected value (μ) and standard deviation (σ) 
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Mathematical Statistics 

• Covariance 

– Between two random variables (x and y) 

– Measures the direction of association 

between them 
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Mathematical Statistics 

• Two random variables are independent 

– If the probability of any particular value of 

one is not affected by the particular value 

of the other than may occur 

– This means that the PDF must have the 

property that f(x,y)=g(x)·h(y) 

– Cov(x,y) = 0 

• Not sufficient to guarantee the two variables 

are statistically independent 
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Mathematical Statistics 

• If x and y are independent 
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• Sum of two random variables 

 

 

 



Matrix algebra background 

• An n×k matrix is a rectangular array of 

terms 

– With i=1,n  

– With j=1,k 
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Matrix algebra background 

• If n=k, A is a square matrix:  aij=aji  

• Identity matrix, In , is a square matrix where 

–  aij=1 if i=j and aij=0 if i ≠ j 

• The determinant of a square matrix, |A| 

– Is a scalar found by suitably multiplying 

together all the terms in the matrix 

• The inverse of an n×n matrix, A,  

– Is another n×n matrix, A-1,  

– Such that: A×A-1=In 
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Matrix algebra background 

• A necessary and sufficient condition for the 

existence of A-1  

– |A| ≠0 

• The leading principal minors of an n × n 

square matrix A 

– Are the series of determinants of the first p 

rows and columns of A 

– Where p=1,n 
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Matrix algebra background 

• An n × n square matrix, A,  

– Is positive definite if all its leading principal 

minors are positive 

– Is negative definite if its principal minors 

alternate in sign starting with a minus 

• Hessian matrix 

– Formed by all the second-order partial 

derivatives of a function 
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Matrix algebra background 

• Hessian of f 

– If f is a continuous and twice differentiable 

function of n variables  
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Concave and convex functions 

• A concave function 

– Is always below (or on) any tangent to it 

– f ”(x0) ≤ 0 

– The Hessian matrix - negative definite 

• A convex function  

– Is always above (or on) any tangent 

– f ”(x0) ≥ 0 

– The Hessian matrix - positive definite 
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Maximization 

• First-order conditions  

– For an unconstrained maximum of a 

function of many variables 

– Requires finding a point at which the 

partial derivatives are zero 

• If the function is concave it will be below its 

tangent plane at this point 

– True maximum 
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Constrained maxima 

• Maximize f(x1,…,xn) subject to the 

constraint g(x1,…,xn)=0 

– First-order conditions for a maximum: 

fi+λgi=0 

• Where λ is the Lagrange multiplier 

– Second-order conditions for a maximum 

• Augmented (‘‘bordered’’) Hessian, Hb  

• (-1)Hb must be negative definite 
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Constrained maxima 

• Augmented (‘‘bordered’’) Hessian, Hb  
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Quasi-concavity 

• If the constraint, g, is linear; 

 g(x1,…,xn)=c-b1x1-b2x2-…-bnxn=0 

• First-order conditions for a maximum: fi=λbi ; 

i=1,…,n 

– Quasi-concave function 

• The bordered Hessian Hb and the matrix H’  

have the same leading principal minors 

except for a (positive) constant of 

proportionality 

– H’ follows the same sign conventions as Hb 

» (-1)H’ must be negative definite  
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Quasi-concavity 

• The matrix H’ 
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