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Basic Concept of Probability Theory

e Sample Space
* Qutcomes
* Experiment/Random Trail



Basic Concept of Probability Theory

Random Variable:

— not a variable that is random

— function from outcome space to numbers

Discrete and Continuous

Cumu
Proba
Proba

ative distribution function (cdf)
oility mass function (pmf)

oility distribution function (pdf)



Basic Concept of Probability Theory

* Expected value: E(x)

+00

E =Y % (%) E(Q)= [ xf(x)x

—00

 Variance

Discrete: Var(x)=0. = i[xf —E(x)] f(x)

Continuous: Var(x)=oc_. = T x-E (x)]2 f(x)dx
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Lottery

Two-outcome lottery: (x,y;p,1-p)

Win x with probability p

Win y with probability 1-p

Expected value of lottery h= (x,y;p,1-p)
E(h)=px+(1-p)y



Fair Bet

* Lottery his a fair bet if expected value of zero:
E(h)=0
e Utility (lottery) = E(lottery)?



St. Petersburg Paradox:

 Acoinis flipped until a head appears

* |f a head appears on the nth flip, the player is
paid S2"

e EX=00

E() =Y mx =2 @ TR T
=1 =1
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What’s wrong here?

* Not willing to pay a large amount for infinite
expected value lottery

* U(lottery)=E(lottery)
* So we need something more...



Expected Utility

 von Neumann-Morgenstern Theorem
— Lottery can be ranked by expected utility

EU(h) = U (x)

— Cardinal utility
— Expected utility maximization
* individuals act as if they are maximizing EU

* St. Petersburg game may converge to a finite
expected utility value



EXAMPLE 7.1 Bernoulli’s Solution to the Paradox and Its
9

Shortcomings

 Utility of each prize in the St. Petersburg
paradox is U(x;)=In x;
* Diminishing marginal utility (U’ > 0 but U” < 0),
* The expected utility value of this game
converges to a finite number:

expected utility = > 7U (x,) = Z%In(zi) =1.39 '
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EXAMPLE 7.1 Bernoulli’s Solution to the Paradox and Its

. Shortcomings

« Bernoulli's solution to the St. Petersburg
paradox

i * Does not completely solve the problem

* As long as there Iis no upper bound to the utility
function

* The paradox can be regenerated by redefining
the gamble’s prizes ‘
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Assumptions for vNM Utility

Completeness:

— for any lottery x,y; either xRy; yRx or both
Transitivity:

— If xRy and yRz, then xRz

Continuity:

— If XRyRz, then there exists 0< p<1 such that px+(1-p)z
is indifferent with y

Independence:

— If xRy, then for any lottery z, and 0< p<1, we have
px+(1-p)z R py+(1-p)z



(Absolute) Certainty Equivalent

* (Absolute) Risk Premium (RP): amount needed
to take lottery h given wealth W

U(W-RP) = EU(h)
e (Absolute) Certainty equivalent (CE) of lottery
h=(x,y;p,1-p) is
U(CE)=EU(h)=pU(x)+(1-p)U(y)
* By construction, U(CE) = U(W-RP), so
CE= W-RP
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(Absolute) Risk Premium

* (Absolute) Risk Premium (RP): amount needed
to take lottery h given wealth W

U(W+E(h)-RP) = EU(W+h)
e (Absolute) Certainty equivalent (CE) of lottery
h=(x,y;p,1-p) is
U(CE)=EU(W+h)=pU(W+x)+(1-p)U(W+y)
* By construction, U(CE) = U(W+E(h)-RP), so
CE= W+E(h)-RP
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Relative Risk Premium

e Relative Risk Premium (RRP): relative amount
of wealth needed to take lottery hW given

wealth W
U(E(Wh)-WxRRP) = EU(hW)
* By rewriting, we have
WxRRP(h,W) = RP(hW W)
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Risk Attitude

e Risk attitude: sign of risk premium for fair bet:
— Risk loving: risk premium <0
— Risk neutral: risk premium =0

— Risk aversed: risk premium >0

* St. Petersburg paradox: most of us are risk-
aversed

* Size of Risk premium: most natural measure



RIS
RIS
RIS

Risk Attitude

< loving: risk premium <0
< neutral: risk premium =0

< aversed: risk premium >0



e N
Utility (U)

—— U(W)
EU(A):UL(JéVEVX?

EU(B)

Wealth (W)

A

CE
If the utility-of-wealth function is concave (i.e., exhibits a diminishing marginal utility of
wealth), then this person will refuse fair bets. A 50-50 chance of winning or losing h dollars,
for example, yields less expected utility [EU(A)] than does refusing the bet. The reason for

| this is that winning h dollars means less to this individual than does losing h dollars. )
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EXAMPLE 7.2  Willingness to Pay for Insurance

"+ A person with a current wealth of $100,000

» Faces a 25% chance of losing his automobile
worth $20,000

Von Neumann-Morgenstern utility index Is:
UWw) =In (W)
Expected utility without insurance

« EU(no insurance) = 0.75U(100,000) + |
0.25U(80,000) = 0.75 In100,000+0.25 In80,000 = ‘

o

11.45714
Expected utility with insurance

« EU(fair insurance)=U(95,000)=In 95,000 =
11.46163
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EXAMPLE 7.2  Willingness to Pay for Insurance

y « EU(maximum-premium insurance)= U(100,000 —
X) = In (100,000 — x) =11.45714

¢ S0 Xx=5,426
* This person

« Would be willing to pay up to $426 in
administrative costs to an insurance company

* In addition to the $5,000 premium to cover the
expected value of the loss

* |s as well off as he or she would be when facing ‘
the world uninsured
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Risk Aversion

Refuse fair bet (Prefer EX over X)

willing to pay something to avoid taking fair
bets (risk premium)

explain why insurance (unfair bet)

Intuition: marginal utility of wealth falls as
wealth gets larger



Measure Risk Aversion

* Most direct measure: risk premium
— Absolute
— Relative

e Both are cumbersome to calculate
 Many measures: classic one is by Arrow-Pratt



Risk Aversion Measure

* Absolution size: absolute risk aversion (ARA)
U
W)= o0
U'(W)
* Relative size: relative risk aversion (RRA)
U"(W)
U'(W)

mrW)=Wr(W)= -W
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Riék Aversion anw

- ™

o |If utility Is quadratic in wealth,
UW)=a+ bW + cW?
—Whereb>0andc<0
—Pratt’s risk aversion measure is

o U"Ww) - -2
"W)= UW) b+2cW

 Risk aversion increases as wealth
Increases

S —
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Riék Aversion anw

- ™

o If utility is logarithmic in wealth,
UW) =1In (W)
—Where W >0
—Pratt’s risk aversion measure is

__u'w)_1
W= Twy Tw

 Risk aversion decreases as wealth
Increases

S —
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Riék Aversion anw

- ™

o If utility Is exponential,

U(W) = —e W = —exp (-AW)
—Where A Is a positive constant
—Pratt’s risk aversion measure is

r(VV) B U "(\N) B AZe—AW B A
uw) Ae "
RISk aversion Is constant as wealth
Increases

S —
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EXAMPLE 7.3 Constant Risk Aversion

* « How much ( f) would an individual pay to
avoid the risk?
* Initial wealth is W,
« Utility function exhibits constant absolute risk
aversion
« A 50-50 chance of winning or losing $1,000
* To find f, we set the utility of W,-f equal to the
expected utility from the gamble
- exp [-A(W,-)] = -0.5 exp [-A(W,;+1,000)] -0.5 exp '
[-A(W,-1,000)]
exp(Af) = 0.5exp(-1,000A)+ 0.5exp(1,000A)
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Relative Risk AW

28 -

* The power utility function

WFR/R for R< L,R#0
InR IfR=0
— Diminishing absolute relative risk aversion

U™ R-1)W R R-1
fwy= YW (R-DWTF_ (R-)

U'(W) W W
— But constant relative risk aversion

mW)=Wr(W)=-(R-1)=1-R

— -/

U(W, R) =+
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EXAMPLE 7.4 Constant Relative Risk Aversion

- » Constant relative risk aversion utility function

* What fraction of initial wealth ( f)

« Willing to give up to avoid a fair gamble of, 10% of
‘ Initial wealth

e Assume R =0

 Logarithmic utility function
IN[(1-f)W,] = 0.5 In(1.1W,) + 0.5 In(0.9W,,)
In(1-f) = 0.5 In(1.1) + 0.5 In(0.9) = In(0.99)05
f=0.005 ‘
 Sacrifice up to 0.5 percent of wealth to avoid the
10 percent gamble
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Technical: Absolute Risk Aversion

* Consider a fair bet h (E(h) = 0)

* Absolute Risk premium (ARP(h;W)):
E[U(W + h)] = U(W — ARP(h;W))

* Taylor series expansion:

e [HS: UW -ARP)=U(W) - ARPxU’(W) + ...

* RHS:
E[U(W + h)] = E[U(W) - hU’(W) + h2/2 U” (W) + ...
E[UW + h)] = U(W) - E(h)U’(W) + E(h?)/2 U” (W) + ...
E[UW + h)] = U(W) + Var(h)/2 U” (W) + ...

11/5/2012 EC4101 (L2)
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Technical: Absolute Risk Aversion

* Dropping higher order terms, we have

U(W)— ARP xU ‘(W) =U (\N)+%Var(h)u (W)

ARP(h:W) = %Var(h)r(\N)
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Technical: Relative Risk Aversion

e Relative Risk premium (RRP):
E[UW + h)] = UW - RPRxW)
* Hence, ARP(Wh;W) = WxRRP(h;W)
ARP(Wh;W)
W

11

W EVar(\Nh)r(\N) = —Var(h)Wr(\N)

= —Var(h)rr(\N)
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Mean-Variance Preference

 ARP and RRP is approximately related to
variance of lottery

* |s there any case that preference exactly
represented by mean and variance of lottery?
— Quadratic Utility (U(w)=aw-bw?)

— Constant absolute aversion and lottery follows
normal distribution (U(w)=-e"")



Quadratic utility

o Utility: U(W)=aW-bW?

* Expected utility of lottery h:
EU(W+h)

=aE(W+h)-bE((W+h)?)

= a(W+E(h))-b[Var(h)+(W+E(h))?]

 Hence, only E(h) and Var(h)



CARA with normality

* Lottery h follows normal distribution:

o g
e CARA utility: U(X)=-exp(-rX)
E[UW+h)]
:?U(\N+h)f(h)dh
E 1

_ _ [—exp(rW + rh) exp(- (h _‘j)z )dh

\N 270 20
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CARA with Normality

 Con’t from previous page
E[U(W+h)]

_ —exp(rw) jexp(— (h—pu+ro?) +r°c* —2urc?
2

\ 270 20°

—exp(rW — ur + 1 r’c?)

)dh

(h—u+ro®)’

— 27[6_2 j exp(— -

= —exp(rW — ur + % r’c?)

)dh
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Applications

Diversification
Pricing contingent commodities

nsurance



Diversification

* A person has wealth W to invest in two
independent risky assets, 1 and 2

* Equal expected values (u,=u,)
* Equal variances (04,=0%,)
* Undiversified portfolio: just one of the assets
— Expected return: y , = u,=u,

_ : 2 =2 =2
Variance: o<, = 0°,=0%,



Diversification

* Diversified portfolio, DP

* o, —the fraction invested in the first asset
* (1- a;) — the fraction invested in the second

— Expected return:

Mpp = O MqH(1- o)uy= Uy=H,
— Variance:

— Minimize 02,

a,=%; 0°y=0°,/2

11/5/2012 EC4101 (L2)

39



Contingent commodities

e Contingent commodities (e.g. insurance)

— delivered only in a particular state of the world

— “S1 in good times” or “S1 in bad times”
* Assume two contingent goods

— Wealth in good/bad times (w,/w,)

— probability that good times: &

— Expected utility: V(W,W,) = tU(W,) + (1 - T)U(W,,)
* Budget constraint: w=p w, +p,W,



Contingent commodities

* price ratio p,/p,
* |f there is a market, all old techniques apply!

— Fair price : p, = and p, = (1- «)

— Fair market:
Price ratio = odds in favor of good times
By 7
P, 1-nx
* Optimality: MRS = OV 1 oW, J W, _ P

oV [ OW, ) 1-mU'W,) p,
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Fair Market

e Fair market:

LJ 1
(W) =1 or W, =W,
U (W)
* Individual makes the same level of wealth

regardless of the state (full coverage!)
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( i
W,

certainty line

W* ------------

W ?
The line | represents the individual’s budget constraint for contingent wealth claims: W =
PgWy + PpW,,. If the market for contingent claims is actuarially fair [p, /p, = 1/(1- )], then
utility maximization will occur on the certainty line where W, = Wy, = W*. If prices are not
actuarially fair, the budget constraint may resemble I’, and utility maximization will occur at a
\_ point where W, > W, )
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EXAMPLE 7.6 Insurance In the State-Preference Model

" » A person with wealth of $100,000

» Faces a 25% chance of losing his automobile
worth $20,000

* Wealth with no theft (W;) = $100,000 and
probability of no theft =0.75

» Wealth with a theft (W,) = $80,000 and
probabillity of a theft = 0.25

» Assume logarithmic utility ;
E(U) = 0.75U(W,)+0.25U(W,)=0.75In W, + 0.25In W, '

E(U) = 11.45714
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EXAMPLE 7.6 Insurance In the State-Preference Model

~ « The budget constraint

* Written in terms of the prices of the contingent
commodities

ngg* T pbWb* - ngg T pbWb
« Assuming that these prices equal the
probabillities of these two states

0.75(100,000) + 0.25(80,000) = 95,000
« The expected value of wealth = $95,000
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EXAMPLE 7.6 Insurance In the State-Preference Model

© » The individual will move to the certainty line
and receive an expected utility of

E(U) = In 95,000 = 11.46163

‘  To be able to do so, the individual must be able
to transfer $5,000 in extra wealth in good times
into $15,000 of extra wealth in bad times

* A fair insurance contract will allow this
* The wealth changes promised by insurance ‘
(dWp/dW,) = 15,000/-5,000 = -3
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EXAMPLE 7.6 Insurance In the State-Preference Model

policy with a deductible provision

* Insurance policy costs $4,900, but requires the
person to incur the first $1,000 of the loss

W, = 100,000 - 4,900 = 95,100

W, = 80,000 - 4,900 + 19,000 = 94,100
E(U) =0.751n 95,100 + 0.25 In 94,100
E(U) = 11.46004

* The policy still provides higher utility than doing
nothing
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Risk Premium

 Two people: same initial wealth of W*

* Constant relative risk aversion: R

WFR WR
V(\Ng,Wb):ﬂ?ng(l—ﬂ)?b

11/5/2012 EC4101 (L2)
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( N
W
certainty line
W+l
U PR S
W* - h U,
U,
Wy
W* W, W,
Indifference curve U, represents the preferences of a risk-averse person, whereas the
person with preferences represented by U, is willing to assume more risk. When faced with
the risk of losing h in bad times, person 2 will require compensation of W, — W* in good
|_ times, whereas person 1 will require a larger amount given by W, - W*. )
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Insurance

* Risk-aversion:

— willing to pay a premium

— always wants to buy full coverage a fair insurance
* |nsurance market has problem because:

— Large-scale disasters

— Rare and unpredictable events

— Informational disadvantage the company may have
relative to the customer

* Adverse selection problem
— Moral hazard problem



Formal model of insurance

nitial wealth: W
Potential Loss: L with probably ©t

nsurance premium per dollar coverage: p
Consumer choose coverage: g
max, tU(W-L-pg+q)+ (1-n)U(W-pq)
FOC: U’ (W-L-pg+q)(1-p)-p(1-7)U’(W-pq)=0
U'W-L+@-p)g) 1-7 p
U'(W - pq) 7 1-p




Formal model of insurance

(Actuarial) fair insurance:
(1-7t)pg- 7 (1-p)g=0
Then p=m
Hence, U’ (W-L+(1-p)q) = U (W-pq)
Under strict risk aversion (U’’<0),
W-L+(1-p)q = W-pg
Therefore, g=L.
Full coverage!



M The Portfolio Problem

* Basic model with one risky asset

—Assume an individual has wealth (W,) to
Invest in one of two assets

—One asset yields a certain return of r;
—One asset’s return is a random variable, r
—k - the amount invested in the risky asset
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M The Portfolio Problem

 The person’s wealth at the end of one
period

W = (Wo — K)(L+ 1) + k(L + 1)
W =Wy(1 +rp) + Kk(r—ry)

— W s now a random variable: it depends on r

— k can be positive or negative: can buy or sell
short

— k can be greater than W,,: the investor could
borrow at the risk-free rate
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m The Portfolio Problem

 U(W) - the investor's utility function

— The von Neumann-Morgenstern
theorem: he will choose k to maximize
E[UW)]

 The first-order condition:

cE[U(w)] o :U (W, (L+1, )+ K (r—r, ))] )
ok oK

:E[U '.(r—rf )]:O
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M The Portfolio Problem

 AslongasE(r—ry) >0

— An investor will choose positive amounts
of the risky asset

e Asrrisk aversion Increases

— The amount of the risky asset held will
fall

— The shape of the U’ function will change
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M CARA utility

* The investor’s utility function - the CARA
form: U(W) = — exp (- AW)
—Marginal utility function: U’(W) = A exp(-AW)
— End-of-period wealth:
U'(W) = A exp[— A(W(1+r;) + K(r —ry))] =

= A exp[-A(Wy(1+r9] exp[-Ak(r — ry]
— Optimality condition:

E[U"(r—ry)] = A exp[- AWy (1+17)]

E[exp(= AK(r —rp)-(r — r9]=0
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m CARA utility

« CARA function

—Implies that the fraction of wealth that an
iInvestor holds in risky assets should
decrease as wealth increases

* CRRA form

— All individuals with the same risk tolerance

« Wil hold the same fraction of wealth in risky
assets

- Regardless of their absolute levels of wealth
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m Portfolios of many risky assets

* Return on each of n risky assets
—The random variabler, (i=1,..., n)
— Expected values: E(r;)=p,
—Variances: Var(r;) = 02
—An Investor who invests a portion of his or

her wealth in a portfolio of these assets
will obtain a random return:

n n
r,=> o, where >0, ) =1
i=1 1=1
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m Portfolios of many risky assets

* Expected return on this portfolio
E(rp) — lup — Zgilui
1=1

e |f the returns of each asset are
iIndependent

— The variance of the portfolio’s return:

n
Var(r,)=o, = > a/c;
1=1
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M Optimal portfolios

» Solving the optimal portfolio problem

— The first step: consider portfolios of just
the risky assets

—The second step: add in the riskless one

* Optimal portfolio of just the risky assets

—Choose a general set of asset weightings
(the o)
« Minimize the variance (or standard deviation)

—"Efficiency frontier” for risky asset
portfolios
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m Optimal portfolios

* Add a risk-free asset
—With expected return
—And standard deviation g;= 0
* Optimal portfolios

—“Market portfolio™” consisting of all capital
assets held in proportion to their market
valuations

- Expected return y,
 Standard deviation g,
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M Optimal portfolios

* Mixed portfolio (line RP)

Ho — My
lup:/uf T .Gp
O\

- Permits individual investors to “purchase”
returns in excess of the risk-free return (Jy,-Hs)
by taking on proportionally more risk (/o)

« Points to the left of the market point M:
O,/oy<land s < Y, < Ky

- High-risk points to the right of M: o ,/o},>1 and
Mo = M
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-
Mp

~

The frontier EE represents
optimal mixtures of risky
assets that minimize the
standard deviation of the
portfolio, Op, for each
expected return, Up. A risk-
free asset with return s
offers investors the
opportunity to hold mixed
portfolios along RP that mix
this risk-free asset with the
market portfolio, M.

.

EC4101 (L2)
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M Individual choices

* Individuals with low tolerance for risk (1)

— Opt for portfolios that are heavily weighted
toward the risk-free asset

* Investors willing to assume a modest
degree of risk (Il )

— Opt for portfolios close to the market
portfolio

* High-risk investors (Il )
—Opt for leveraged portfolios
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-

Hp

~

Given the market options
RP, investors can choose
how much risk they wish to
assume. Very risk-averse
investors (U,) will hold
mainly risk-free assets,
whereas risk takers (U,,) will
opt for leveraged portfolios.

.

EC4101 (L2)
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M Mutual funds

* Mutual funds
—Pool the funds of many individuals

— Able to achieve economies of scale In
transactions and management costs

« Fund owners to share in the fortunes of a
much wider variety of equities

—Managers have incentives of their own

— Portfolios they hold may not always be
perfect representations of the risk
attitudes of their clients
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M Capital asset pricing model

* Portfolio

—Small amount (o) of an asset with a
random return X

— Market portfolio, random return M

— Return on the portfolio: z = ax+(1- )M
— EXpected return:

M, = oy + (1- a)uy

—Variance:

0%, = a?0°, + (1- @)?0°, + 2a(1- a) oy,
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M Capital asset pricing model

GZ
,Uz::ufJF(/UM _/Uf)'

Ow
oL, S ::UM — Ui Oo,
oa ¢ o, O«
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