
National University of Singapore

Microeconomic Analysis III, EC4101 (gr.2)

Tutorial 8: Game Theory

Lecturer: KO Chiu Yu

1. The inverse demand function in an industry is given by p = a − bq, where

p is the market price, q is the aggregate supply in the market, and a and

b are positive constants. There are n firms in this industry, and each firms

produces the output at a marginal cost c, where c < a.

(a) Assume that n = 2, and firms choose output levels to maximize individ-

ual profits. Compute the Nash equilibrium of this game.

(b) If the firms could collude by some means, could they increase their profits

above those in part (a)? If so, can such profits be sustained?

Answer: We begin by solving the model for n firms. However, in order to do

this, the following relationships need to be introduced. Define the profit function

for the individual firm as

Πi =
Revenue︷︸︸︷
pqi −

Costs︷︸︸︷
cqi

and the inverse demand function, given by

p = a− bQ

where p is the market price, qi is the output produced by firm i, c is the cost faced

by the firm of producing each unit of output, and Q is total market output (output

produced by all n firms). Further, we assume that a > 0, b > 0. In order to solve

for the general n firm case, it is useful to decompose total output in the following

way:

Q = qi + Q−i

where we recall that qi is the output produced by firm i and we let Q−i denote

output produced by the remaining n− 1 firms. In this model, a key assumption is

that the market price, p, is the same across all firms. We are now well placed to

solve the question.
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Step 1: Substitute the inverse demand function into the profit function. This

gives

Πi = (a− bQ)qi − cqi.

Step 2: Substitute Q with qi + Q−i.

Πi = (a− b(qi + Q−i))qi − cqi.

Step 3: Differentiate the profit function with respect to qi.

∂Πi

∂qi
= a− 2bqi − bQ−i − c = 0.

Step 4: Now solve for qi. This yields

qi =
a− c

2b
− Q−i

2
.

Summing this across all firms gives

∑
qi (= Q) =

n(a− c)

2b
− (n− 1)Q

2
.

(Explanation: Recall, Q = qi +Q−i or Q−i = Q− qi, so that
∑n

i=1 Q−i = nQ−Q =

(n− 1)Q.)

Total output can thus be solved as:

Q =
n(a− c)

(n + 1)b
.

Finally, obtain the quantity produced by firm i through dividing the above expres-

sion by n:

Q

n
= qi =

n(a−c)
(n+1)b

n
=

a− c

(n + 1)b
.

Now we are ready to solve for the two firm case. All that we have to do is set

n = 2. This tells us that the quantity that each firm will produce is given by

qi =
a− c

(2 + 1)b
=

a− c

3b

It also informs us that total industry output is given by

Q =
2(a− c)

(2 + 1)b
=

2

3

a− c

b
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These are the quantities produced under Cournot equilibrium.

1. (b) To see whether firms can increase profits by colluding, maximize industry

profit with respect to total industry output, Q, as follows:

max
Q

[(a− bQ)Q− cQ].

The term (a − bQ)Q − cQ is merely the profit function for the whole industry

(recall that p = a− bQ). Differentiating w.r.t. to Q yields

a− 2bQ− c = 0,

solving which obtain:

Q =
a− c

2b
.

For an individual firm’s output share, divide profit-maximizing industry output

by n:

qi =
a− c

2nb
.

When n = 2,

qi =
a− c

4b
.

This shows that optimal output is less than output when firms decide to set

quantities individually (i.e. under Cournot equilibrium - compare with the solu-

tions in part (a)). It turns out that Q = a−c
2b

is the amount which a firm would set

if it were a monopolist - that is, if all other firms did not produce anything (note

that this is equivalent to setting n = 1 for qi = a−c
2nb

).

As higher output implies lower profits, firms would be best to collude to increase

profits - they would do this by producing less. Yet it is unreasonable to suppose

this will happen, as there is an incentive for each firm to deviate - essentially though

increasing the quantity produced, which drives down prices, and thus profits. In

Cournot equilibrium there is no incentive for any firm to increase output further.
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Question 2: Consider the two player game in extensive form as shown in the

figure below.

a:For each player A and B, list strategies.

b:Define the Nash equilibrium. What are the Nash equilibria in the preceding

game? What are the Nash outcomes?

c: Define a subgame perfect Nash equilibrium. What are subgame perfect Nash

equilibria in the preceding game? What are the subgame perfect outcomes?

Answer 2: Player B has two information sets.

The first is characterised by the single node, which corresponds to Player A

choosing action a4. This information set is also known as singleton information

set, since it contains a single node.

The second is characterised by the two nodes, and correspond to Player A choos-

ing either action a2 or action a3. As there is more than one node in the second

information set, it is NOT a singleton information set.
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The interpretation of the game: Should Player B get the opportunity to move

(this occurs if Player A does not choose action a1), she will base her decision on the

following information: If Player A chooses a4, then Player B will learn that a2 and

a3 were not chosen. She will know precisely which node has been reached as the

node is a singleton information set. She is then faced with choosing between

actions B1 and B2.

However, if Player A chooses a2 or a3, then Player B learns that a4 was not

chosen, but not which of a2 or a3 was chosen. This makes the game in the Figure

given as a game of imperfect information. Essentially, she will not know which blue

node has been reached, and has to choose between actions b1 and b2.

Answer 2(a).

In an extensive form game, the lines out of a player’s decision node(s) represent

a possible action for that player, whereas a strategy is a predetermined ‘programme

of play’ that tells a player what action to take in every information set the player

is designated to move.
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In this specific game, player A’s actions are the same as his strategies – namely

to play either a1, a2, a3 or a4. Therefore A’s actions and strategies sets are iden-

tical {a1, a2, a3, a4}.

Now consider player B. Her actions are given by b1, b2, B1, B2. You may

alternatively group the actions according to two different information sets.

Put another way, the actions available to B are contingent on where the game

ends up after A has moved: B will have a different set of actions depending on the

information set he ends up at. As B moves at two different information sets, if she

gets the opportunity to move her strategies can be defined as:

Strategy 1: Play b1B1.

Strategy 2: Play b1B2.

Strategy 3: Play b2B1.

Strategy 4: Play b2B2.

In other words, B has 4 strategies.

We can write these strategies as b1B1, b1B2, b2B1 and b2B2. The game

can now be represented in normal form. The rows are labeled with A’s feasible

strategies, and the columns with B’s feasible strategies. (Note that in the matrix

below, strategies are written with comma(,) separating player B’s actions at two

different information sets. I cannot get rid of the comma as the matrix is written

in another file to which I have no access. Write the strategies in a way, with or

without comma, that you feel comfortable with.)

Answer 2(b)

A Nash equilibriumis a strategy combination in which each player chooses a

best response to the strategies chosen by the other player.

Pure-strategy Nash-Equilibria are (a1, b1B1), (a3, b2B1),(a3, b2B2) and

(a4, (b1,B2)).

And the Nash outcomes corresponding to these equilibria are (0,2), (2,1), (2,1) and

(1,2) respectively.
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Answer 2(c)

A subgame must start at an information set containing only a single node. This

disqualifies an information set having two or more nodes to be the starting point

of a subgame.

A subgame is a game consisting of a singleton node information set (where a

specific player is designated to make a move) and all that follows the particular

node – i.e., the successors to the node and the payoffs at the associated end-nodes.

Using this definition, it is easy to see that the game we are considering has two

subgames:

• The whole game (trivial subgame)

• The rest of the game after the node located the end of the branch a4 (i.e.,

where B makes one of two moves B1, B2).

Returning to the non-trivial subgame, it is clear to see that for B, strategy B2

dominates B1 (as 2 > −1): B will always play B2, and the extensive form game

reduces to that shown in the figure above.
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Therefore, all NE involving B1 can be eliminated. This means that two of the

pure-strategy Nash-Equilibria highlighted in – (a1, b1B1) and (a3, b2B1) – can

be eliminated. The remaining equilibria – (a3, b2,B2) and (a4, b1,B2) – consti-

tute subgame-perfect Nash-equilibria (SPNE).

Subgame-perfect Nash Equilibria (SPNE) exists where players’ strategies

induce a Nash equilibrium in every subgame. In other words, SPNE is just a NE

that induces NE in subgames. For example, when we put the extensive form game

into normal from representation, we were able to identify four Nash equilibria.

However, not all of these equilibria constituted NE in all of the subgames.

Since we know that B would never play B1, all NE involving strategies which

involve B1 can be eliminated, leaving two SPNE – (a3, b2B2) and (a4,b1,B2).

Question: 3. Consider the following two player game. Player 1 chooses a row
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(Top, Middle, or Bottom) and, simultaneously, player 2 chooses a column (Left,

Middle, or Right). Each cell in the outcome matrix specifies the payoffs to players

1 and 2 respectively, for each combination of choices made by them. The pay-off

matrix is represented below.

(a) Identify all the pure-strategy Nash equilibria in the above game.

(b) Are there any mixed-strategy Nash equilibria? If so, which strategies are

not used in the equilibrium randomization?

Answer: 3

3. Through iterated elimination of strictly dominated strategies it is easy to

see that for Player 2, playing Left is strictly dominated by Right. This is because

given her payoffs, it is rational for Player 2 to choose Right over Left, irrespective

of whether Player 1’s chooses to go to the Top, Middle or Bottom(i.e. the payoff

is higher in every case). Therefore, the first column of the matrix can be

eliminated and we ignore it from now on.

Having eliminated the first column - which leaves a 3 × 2 matrix - it is easy

to infer that for Player 1, Bottom is strictly dominated by Middle: irrespective of
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Player 2’s choice over Middle or Right. As it is always better for Player 1 to choose

Middle over Bottom and accordingly, the last row disappears.

The payoff matrix in given in figure reduces to a so-called ‘Battle of the Sexes’

game.

(a). The Battle of the Sexes game is characterised by multiple pure strategy

Nash equilibria (NE). The pure strategy NE outcomes are (Top, Middle) and

(Middle, Right). Payoffs are not possible to determine.

(b). To solve for the mixed strategy equilibrium, begin by assigning probabil-

ities to the actions available to respective players: for Player 1 (P1), denote the

probability of choosing Top and Middle as p and (1 − p) respectively; for Player

2 (P2), denote the probability of Middle and Right as q and (1 − q) respectively.

This is shown in Figure below. We use what is called the payoff equating method

to determine the solution of the game. For Player 1, this involves equating the

utility from choosing Top to the utility from going to see a Football match (as in

the “Battle-of-the Sexes” game). Write this as

U(Top) = U(Football), (1)

which can be written as

6q︸︷︷︸
[Payoff to P1 from

choosing Cinema] ×
[ Pr (P2 chooses

Cinema)]

+ 3(1− q)︸ ︷︷ ︸
[Payoff to P1 from

choosing Cinema] ×
[ Pr (P2 chooses

Football)]

= 3q︸︷︷︸
[Payoff to P1 from

choosing Football] ×
[ Pr (P2 chooses

Cinema)]

+ 5(1− q)︸ ︷︷ ︸
[Payoff to P1 from

choosing Football] ×
[ Pr (P2 chooses

Football)]

(2)

It is easy to show that solving for q yields q = 2
5
. Further, using the same

method, it can be shown that when payoffs are equated for Player 2, p = 3
5
. Thus

the mixed strategy NE are given by:

P1 :
Chooses Cinema with probability p = 3

5

Chooses Football with probability (1− p) = 2
5

(3)

and

P2 :
Chooses Cinema with probability q = 2

5

Chooses Football with probability (1− q) = 3
5

(4)

Using these probabilities, we are in a position to calculate players’ payoffs. For

Player 1, we just substitute the numerical values of p and q (obtained using the
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payoff equating method) back into the LHS or the RHS of our expression using the

payoff equating method shown above. Player 1 gets

U(Cinema)︷ ︸︸ ︷
6q︸︷︷︸

[Payoff to P1 from

choosing Cinema] ×
[ Pr (P2 chooses

Cinema)]

+ 3(1− q)︸ ︷︷ ︸
[Payoff to P1 from

choosing Cinema] ×
[ Pr (P2 chooses

Football)]

= 6 · 2

5
+ 3 · 3

5
=

21

5
(5)

and Player 2 gets

U(Cinema)︷ ︸︸ ︷
5p︸︷︷︸

[Payoff to P2 from

choosing Cinema] ×
[ Pr (P1 chooses

Cinema)]

+ 3(1− p)︸ ︷︷ ︸
[Payoff to P2 from

choosing Cinema] ×
[ Pr (P1 chooses

Football)]

= 5 · 3

5
+ 3 · 2

5
=

21

5
(6)

The payoffs are the same. This makes intuitive sense, as the reduced game is

symmetric.
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