EC 4101: Microeconomic Analysis llI

Parimal Bag
Dept. of Economics

All relevant details on EC4101 are in the
syllabus

3 suggestions

Please follow the textbook and lectures closely.

Use the material on the slides to guide you through the material in
the textbook.

Try solving all the assignments even if you might not be the
designated student.


../syllabusEC4101.pdf

What is the job of an economic theorist?



The Raft of Medusa (1819) - Jean Louis Théodore Géricault

Moment from the aftermath of the wreck of the French naval frigate
Meéduse, which ran aground off the coast of today's Mauritania on July 5,
1816

Take a real situation or story or thought ... that exists and represent itin a
useful manner



sourcefiles/The_Raft_of_the_Medusa.pdf
sourcefiles/The_Raft_of_the_Medusa.pdf
http://upload.wikimedia.org/wikipedia/commons/f/f1/G%C3%A9ricault_-_La_zattera_della_Medusa.jpg

e Mars Rover Spirit (2004)

* The objective is to do something that is
practically useful


http://marsrover.nasa.gov/newsroom/pressreleases/20110104b.html

What is EC 4101 about?

Microeconomic theory is about modeling individual
consumer and firm behavior in a mathematically to allow
technically mature analysis.

EC 3101 gives some description of these models — focuses
on covering many topics rather than details

— This description not enough for serious analysis

EC4101 focuses on giving you the full technical description
of those models

— This description is useful for serious analysis

Of course, that means we cannot cover as many topics.



Chapter 2

Mathematics for
Microeconomics

= This file is a summary of the basic maths that you
should know (but we do not have the time to go over in
lecture). So keep it handy for future consultation.

= You will notice at a few places parenthesis such as
“(” and “)” not aligned properly. This is not my fault — it's
the slightly distorted pdf conversion.



The Mathematics of Optimization

 Economic theories assume that an economic
agent is seeking to find the optimal value of
some function
— consumers seek to maximize utility
— firms seek to maximize profit

* This chapter reviews the mathematics that go
into these problems R

nd 2N



Functions with One Variable

e Simple example: Manager of a firm wants to
maximize profits

n=1f(q)

T

Maximum profit *
at g*

Quantity



Functions with One Variable

* Vary g to see where maximum profit occurs

—anincrease from g, to g, leadstoariseinm

Quantity

ﬂ>0

AqQ



Functions with One Variable

 |f output is increased beyond g*, profit will

decline

— anincrease from g* to g; leadsto adrop in &t

Quantity

%<O

AqQ



Derivatives

* The derivative of = f(qg) is the limit of
An/Aq for very small changes in g

dr _df _ . f(g,+h)-1(q)
dq dq h—0 h

* The value depends on the value of g,



Value of a Derivative at a Point

e The evaluation of the derivative at the

point g = g, can be ¢

* |In our previous examp

dn
dg

d=4;

>0

enoted

qd=d,

q=0d3

<0

93 Quantity

q=qg*

=0




First Order Condition for a Maximum

* For a function of one variable to attain its
maximum value at some point, the
derivative at that point must be zero

df
dg




Second Order Conditions

* The first order condition (dnt/dg) is a
necessary condition for a maximum, but it

is not a sufficient condition

If the profit function was u-shaped,
the first order condition would result
In g* being chosen and © would

be minimized

Quantity



Second Order Conditions

* This must mean that, in order for g* to be
the optimum,

d—ﬂ>0forq<q* and d—7T<Oforq>q>'<
dg dg

» At g*, dn/dg must be
decreasing
— the derivative of

dn/dg must be
negative at g*

n*

T3

q* 43 Quantity



Second Derivatives

e The derivative of a derivative is called a
second derivative

* The second derivative can be denoted by

2 2
d gor d f2 or f"(q)

dg dqg




Second Order Condition

* The second order condition to represent a
(local) maximum is

d°n
dqg’

=f"(q)|,_,. <O

q=q*




Rules for Finding Derivatives

1.f bisaconstant, then g—b =0
X

d[bf (x)]

2.If bisaconstant, then = bf'(Xx)

b

3.If bisconstant, then O;L = bX
X

b-1

dinx 1
- dx

A



Rules for Finding Derivatives

da”
dx

5. =a”Ina for any constant a

— a special case of this rule is deX/dx = e~



Rules for Finding Derivatives

e Suppose that f(x) and g(x) are two functions
of x and f’(x) and g’(x) exist

e Then

g Al (x)+9(x)]

=1'(x)+9'(x)

, dIf(x)-g()

r =1(x)g'(x) +1'(x)g(x)
X



Rules for Finding Derivatives

dtmj
g \d X)) _f(x)d x)-£ x)g( x)
" adx (¢ x)f

provided that ¢ x)=0



Rules for Finding Derivatives

* Ify=f(x) and x = g(z) [so y = f(g(z))] and if
both f’(x) and g’(x) exist, then:
9 dy dy dx df dg
"dz dx dz dx dz

— this iIs called the chain rule

— allows us to study how one variable (z)
affects another variable (y) through its
Influence on some intermediate variable (x)




Rules for Finding Derivatives

 Some examples of the chain rule include

10. di de -d(ax)ze""x-azaeaX
dx d(ax) dx
g dlifax)| _dimax) dax)_ 1 1
o d ax) dx  ax  x

1, dInOA)] diin(x?)] d(x?) 1
dx d(x?) dx = x°




Example of Profit Maximization
e Suppose that the relationship between profit

and output is

© =1,000q - 5g°
* The first order condition for a maximum is
dr/dg = 1,000 - 10g = 0
g* =100

* Since the second derivative is always -10,

g = 100 is a global maximum




Functions of Several Variables

* Most goals of economic agents depend on
several variables

— trade-offs must be made

 The dependence of one variable (y) on a
series of other variables (x,x,,...,x,)) is
denoted by

y =f(X, X, ..., X)



Partial Derivatives

* The partial derivative of y with respect to x,
is denoted by
oy of

—or —orf_orf
OX,  OX, 1

— In calculating the partial derivative, all of
the other x’s are held constant



Partial Derivatives

* A more formal definition of the partial
derivative is

of o KXt hxo,. ., Xxn)—K Xy, X2,...

8—)(1— > h—0 h



Calculating Partial Derivatives
1.y =f(x,,X,) =ax; +bx,x, +cx:, then

a f, =2ax,+bx, and
OX,

A f, = bx, +2¢cx,

OX,

2.1fy =f(x, x,) = e**™ then

a f =ae®™™ and a4 f, = be® ™

OX, OX,



Calculating Partial Derivatives

3.1fy =f(x,%x,) =alnx, + blnx,, then
N g8 gag L f B
OX, X, OX, X,



Partial Derivatives

* Partial derivatives are the mathematical
expression of the ceteris paribus
assumption
— show how changes in one variable affect some

outcome when other influences are held
constant



Second-Order Partial Derivatives

* The partial derivative of a partial derivative
is called a second-order partial derivative

of Iax) _ o't
OX, ox.0%

J



Young’s Theorem

* Under general conditions, the order in
which partial differentiation is conducted to
evaluate second-order partial derivatives
does not matter



Functions of Several Variables

e Suppose an agent wishes to maximize

y = f(X1,X0-1Xp)
* The change in y from a change in x;

(holding all other x’s constant) is

dy — ﬁdX1 — f»idX1
0X,
—the change in y is equal to the change in x;
times the slope (measured in the x,

direction)



Party time! Let’s make the change bigger

dy — ﬁd)ﬂ] — fIdX1
O0X,

A

Ay = ﬂAx1 = f, AX,
OX,



Total Differential

* Suppose that y = f(x,,x,,...,x,)

* |f all x’s are varied by a small amount, the
total effect on y will be

dy = ﬂdx1 + ﬂdx2 +... ﬁdxn
OX, OX, OX .

dy =fdx, +fdx, +...+f dx

Ay =T, A + T, A, +...+ fAX,


















Ay = T, A + T, A, +...+ fAX,

First-Order Condition for a Maximum

* A necessary condition for a maximum of the
function f(x,,x,,...,x,,) is that dy = 0 for any
combination of small changes in the x’s
— this can only be true if

* A point where this condition holds Is
called a critical point




Second-Order Conditions

* This condition is not sufficient to ensure a
maximum

— we need to examine the second-order partial
derivatives of the function f

— conditions that will make f concave would be
sufficient for a maximum



Finding a Maximum
* Suppose that y is a function of x; and x,
y=-(x;-1)%-(x,-2)2+10
Y =-X.2+ 2%, - X2 +4x, + 5

* First-order conditions imply that

N - ox +2=0 1
X, OR :
a—y:—2x2+4:0 X =2

OX,



Implicit Functions

* An “explicit” function which is shown with
a dependent variable (y) as a function of

one or more independent variables (x) such
as

y=mx+b>b
can be written as an “implicit” function
y—mx—b=0
flx,y,m,b) =0



Derivatives from Implicit Functions

* [t will sometimes be helpful to compute
derivatives directly from implicit functions
without solving for one of the variables

directly
— the total differential of g(x,y) =0is
0=g,dx+g,dy
— this means that

dy __ 9.
dx g,



Implicit Function Theorem

* [t may not always be possible to locally solve
implicit functions of the form g(x,y)=0 for
unique explicit functions of the form y = f(x)

Sufficient condition for y = f (x) to exist :
g, #0



=0

(x-D° - (y-2y

10—




10—-(x-1)*—(y-2)*=0




Implicit Function Theorem

* [t may not always be possible to locally solve
implicit functions of the form g(x,y)=0 for
unique explicit functions of the form y = f(x)

Sufficient condition for y = f (x) to exist :
g, #0



The Envelope Theorem

* The envelope theorem concerns how the
optimal value for a function changes when a
parameter of the function changes

— this is easiest to see by using an example



The Envelope Theorem

e Suppose that y (ice cream seller’s profit) is a
function of x (ice cream output)
y =-x*+ ax

* |f a (temperature) is assigned a specific value,
then y becomes a function of x only and the
value of x that maximizes y can be calculated




How does the profit depend on temperature?
Use the Envelope Theorem

Optimal Values of x and y for Alternative Values of a

Value of a Value of x* Value of y*(Profit)
0 0 0
1 1/2 1/4
2 1 1
3 3/2 9/4
4 2 4
5 5/2 25/4
6 3 9



=
o

o [ N w S (¢} (2} ~ [00] ©

The Envelope Theorem

y =-X% + ax
V/AN
/
A
/A

AsS a Increases,
the maximal value
for y increases

The relationship
between a and y
IS quadratic

ay*_,
da



The Envelope Theorem

* Suppose we are interested in how y* changes
as a changes

ay*_,
da

* There are two ways we can do this
— calculate the slope of y* directly
— apply envelope theorem



The Direct Approach

* To calculate the slope of the function, we
must solve for the optimal value of x for any
value of a

dy/dx=-2x+a=0
x¥=aqa/2
e Substituting, we get
y* =-(x*)* + a(x*) = -(a/2)* + a(a/2)
y* =-a%/4 + a?/2 = a%/4



The Direct Approach

 Therefore,
dy*/da =2a/4 =a/2

* We can save time by using the envelope
theorem (x* may not also be explicit)

— for small changes in a, dy*/da can be computed by
holding x at x* and calculating dy/da directly from

y



The Envelope Theorem Way

oy/ oa = x
e Holding x = x*

oy/ oa =x*=a/2

e This is the same result found earlier



The Envelope Theorem

* The change in the optimal value of a function
with respect to a parameter of that function
can be found by partially differentiating the
objective function while holding x (or several
x’s) at its optimal value

dy*_ oy
da oa

X=X*(a)



The Math of Envelope Theorem

* How did the formula come about? We have
from maximizing y = f [x,,x,,a] with respect to x,
and x,

y* =fx.*(a), x;*(a),a)

* Taking derivative w.r.t. a

dy* X dq \of dx, o

A . + .
da GX\ da 8\ da oOa

0 0



The Envelope Theorem: Extention

* This can be extended to the case wherey is a
function of several variables

y = flxy,...x,,,0)

* Finding an optimal value for y would consist of
solving n first-order equations

oy/ox;=0 (i=1,..,n)



The Envelope Theorem

* Optimal values for these x’s would be a function
of a

X, * =x,*(a)
X,* = x,*(a)

Xn™= Xp*(Q)



The Envelope Theorem

* Substituting into the original objective function
gives us the optimal value of y (y*)

y* =f[x;*(a), x,*(a),...x,*(a),a]
e Differentiating yields
dy * of dx,  of dx, of dx, 6 of

+ + o+ P — +
da 0x, da ox, da oXx, da oa

n




The Envelope Theorem

 Because of first-order conditions, all terms
except of/0a are equal to zero if the x’s are at

their optimal values

 Therefore,
dy” _of
da oOa



Constrained Maximization

e Suppose that we wish to find the values of
X1, Xo,-.-, X,, that maximize

y = flxy, Xpees X))

subject to a constraint

g(xy, X5,..., X,) =0



Lagrangian Multiplier Method

 The Lagrangian multiplier method starts
with setting up the expression

L= f(xy, X5,..., X, ) + Ag(xy, X5, ..., X))
— A is called a Lagrangian multiplier




L= 1(Xq, Xpyeeey Xp ) + AQ(Xq, Xoy.tty Xp)
Lagrangian Multiplier Method

* First-Order Conditions
0L [0x,=f,+Ag,=0
0L [0x,=f,+Ag,=0

oL lox,=f +Ag,=0
0L 0N = g(Xqs Xpy..ey Xp) =0



Interpretation of Lagrangian Multiplier

e Rate at which the maximum increases as the
constraint is relaxed — shadow price for the
constraint




Constrained Maximization

e Suppose a farmer had a certain length of
fence (P) and wished to enclose the largest
possible rectangular area

— let x and y be the lengths of the sides

* Problem: choose x and y to maximize the area
(A = x-y) subject to the constraint that the
perimeter is fixed at P = 2x + 2y



Constrained Maximization

e Setting up the Lagrangian multiplier:
L=xy+MAP-2x-2y)

* The first-order conditions for a maximum are
0L [Ox=y-21A=0
0L /0y =x-2L=0
OL[ON=P-2x-2y=0



Constrained Maximization

* Since y/2 =x/2 =\, x must be equal to y
— the field should be square

* Since x =y and y = 2A, we can use the
constraint to show that

x=y=P/4
A =P/8



Constrained Maximization

* |Interpretation of the Lagrangian multiplier

— A suggests that an extra yard of fencing would add
P/8 to the area

— The Lagrangian multiplier provides information
about the implicit value of the constraint



Constrained Maximization &
Envelope Theorem

e Suppose that we want to maximize
y = f(x4,...,x.;0)
subject to the constraint
g(xy,...,x;a) =0

* Solve by setting partial derivatives of
Lagrangian equal to O



Constrained Maximization &
Envelope Theorem

e |t can be shown that

dy*/da = 0% /oa at (x,*,....x.*;a)

n ?

— the change in the maximal value of y from a
change in a can be found by partially
differentiating £ and evaluating the partial
derivative at the optimal point



Inequality Constraints (Not in the textbook)

* In some economic problems the constraints
need not hold exactly

* Suppose we seek to maximize y = f(x,,x,)
subject to

d1 (X1;X2) >0,

g, (X,%,) =0



Lagrangian

We define

L= f(xy, X,) + Ay g1 (X,%) + A, g, (X,%,)
Now we write down the first order
conditions for this Lagrangian

In this case the multipliers have specific
signs: A, A,20

Complementary slackness: at least one of
g. (x,,x,) or A. must be zero at solution



Kuhn-Tucker Conditions

* Sometimes we have a standarde " yained
/

optimization problem)n*" gal

constraints thatt gative.

—~
* In tf?j/ 5 Q (ﬁon -negativity

con ,en(constramts and work

with\’ d«a‘glan the standard way



Second Order Conditions - Functions of
One Variable

e Lety = f(x)
* A necessary condition for a maximum is that
dy/dx =f’(x) =0
— to ensure that the point is a maximum, y must be
decreasing for movements away from it



Second Order Conditions — Sufficiency

Condition
d2
x2y — £"(x) <0

* This means that the function f must have a
concave shape at the critical point



Second Order Conditions - Functions of
Two Variables

* Suppose that y = f(x,, x,)
* First order conditions for a maximum are
Oy/0x,=f,=0
oy/ox,=f,=0
— to ensure that the point is a maximum, y must

diminish for movements in any direction away
from the critical point



Second Order Conditions - Functions of
Two Variables

f11<0, fi1 f5o - f1,° >0

The rest of the sufficiency conditions will be on a need-
to-know basis ©



Quasi-Concavity

e A function U is quasi-concave if for each
number C the following set is convex

(X, y)|U(X,y) =]



Duality

* Any constrained maximization problem has
a dual problem in constrained minimization

— focuses attention on the constraints in the
original problem



Integration

* Integration is the inverse of differentiation
— let F(x) be the integral of f(x)
— then f(x) is the derivative of F(x)

T _p9= 100




Integration

 We denote an integral as

R x)=[{ x)ax
 If f(X) = x then

RX)ZI/( X)dXZdeX=X72+C

— C Is an arbitrary constant of integration



Definite Integrals

We can also use integration to sum up the

area under a function over some defined
interval

F'(X)=f(x) = Xj.bf (X)dx=F(b)-F(a)

Xx=Db

_[ f (x)dx =area under f(x)

X=d



Definite Integrals

Y1 area under £ X)=Xj[j( x)x =R b)-R a)

ﬂ / v




