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Overview 

• Assumptions 

• Edgeworth box diagram 

– Equilibrium; Comparative Statics 

• Model of Exchange 

– Walra’s law, Walrasian equilibirum 

– Existence of equilibrium 

– Welfare theorems 

• Model with production 
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Assumptions 

• all markets are perfectly competitive 

– All consumers and firms are price takers 

• Two goods: x and y 

• Identical preferences 

– same indifference curve 

• Identical technologies 

– same production functions 
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13.1 

Construction of an Edgeworth Box Diagram for Production 

The dimensions of this diagram are given by the total quantities of labor and capital 

available. Quantities of these resources devoted to x production are measured from origin 

Ox; quantities devoted to y are measured from Oy. Any point in the box represents a fully 

employed allocation of the available resources to the two goods. 
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13.2 

Edgeworth Box Diagram of Efficiency in Production 

This diagram adds production isoquants for x and y to Figure 13.1. It then shows technically 

efficient ways to allocate the fixed amounts of k and l between the production of the two 

outputs. The line joining Ox and Oy is the locus of these efficient points. Along this line, the 

RTS (of l for k) in the production of good x is equal to the RTS in the production of y. 
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Production Possibility Frontier 

• How outputs and inputs are related 

– maximum output of y that can be produced for 
any level of x 

• negative of the slope of the production 
possibility frontier 
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13.3 

Production Possibility Frontier 

The production possibility frontier shows the alternative combinations of x and y that can be 

efficiently produced by a firm with fixed resources. The curve can be derived from Figure 13.2 by 

varying inputs between the production of x and y while maintaining the conditions for efficiency. 

The negative of the slope of the production possibility curve is called the rate of product 

transformation (RPT). 
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Shape of the frontier 

• concave shape: an increasing RPT 

– diminishing returns on both x and y 

• Costs of any output combination: C(x,y) 

– Constant along the production possibility frontier,  

• Total differential 
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13.1  Concavity of the Production Possibility 

 Frontier 

• Production of x and y  

• Depends only on labor  

• Production functions: 
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• Total labor supply = 100, lx + ly = 100 

• The production possibility frontier:  

x2 + y2 = 100 for x,y  0 

• The RPT can be calculated: 

• Concave  



13.1  Concavity of the Production Possibility 

 Frontier 

• Two goods are produced under constant 

returns to scale: 
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• Total labor and capital are constrained:  

 kx + ky = 100, and lx + ly = 100 

 



13.1  Concavity of the Production Possibility 

 Frontier 

• Capital-labor ratios: 
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13.1  Concavity of the Production Possibility 

 Frontier 

• Production possibility frontier in terms of the 

share of labor devoted to x production: 
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Equilibrium 

• Price ratio = RPT = MRS 
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13.14 

Determination of Equilibrium Prices 

With a price ratio given by px/py, firms will produce x1, y1; society’s budget constraint will be given by 

line C. With this budget constraint, individuals demand x’1 and y’1; that is, there is an excess demand 

for good x and an excess supply of good y. The workings of the market will move these prices toward 

their equilibrium levels p*x , p*y . At those prices, society’s budget constraint will be given by line C, 

and supply and demand will be in equilibrium. The combination x*, y* of goods will be chosen. 
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Comparative Statics 

• preferences were to shift toward good x 

• technical progress in the production of good x  
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13.5 

Effects of Technical Progress in x Production 

Technical advances that lower marginal costs of x production will shift the production possibility 

frontier. This will generally create income and substitution effects that cause the quantity of x 

produced to increase (assuming x is a normal good). Effects on the production of y are 

ambiguous because income and substitution effects work in opposite directions. 
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13.2  Comparative Statics in a General 

 Equilibrium Model 

• Production possibility frontier: x 2 + y 2 = 100 

• Utility function: U(x,y) = x0.5y0.5 

• Demand functions:  

x = x(px,py,I) = 0.5I/px and y = y(px,py,I) = 0.5I/py  

• Base-case equilibrium  

• Profit maximization by firms: px/py = MCx/MCy = 

RPT = x/y  

• Utility-maximizing demand : px/py = y/x 

•  x*=y*=7.07  and px/py =1 
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13.2  Comparative Statics in a General 

 Equilibrium Model 

• The budget constraint: total income = labor 

income + profits 

• Consider all prices in terms of the wage rate, w 

• Total labor income = 100w 

• Profit for firm x: πx= (px-ACx)x = 50w 

• total income = labor income + profits = 

100w+2(50w)=200w 
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13.2  Comparative Statics in a General 

 Equilibrium Model 

• A shift in supply  

• Technical improvement in x production 

• New production function,  x = 2lx
0.5  

• Production possibility frontier: x2/4+y2=100 

• RPT = x/4y 

• Equilibrium: x*=2(50)0.5 , y*=(50)0.5  px/py = 1/2 
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13.2  Comparative Statics in a General 

 Equilibrium Model 

• A shift in demand  

• Consumer preferences were to switch to favor 

good y , U(x,y)=x0.1y0.9  

• Demand functions: x = 0.1I/px ; y = 0.9I/py  

• Equilibrium: x*=(10)0.5 , y*=3(10)0.5  px/py = 1/3 
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Application: Trade Policy 

• What happen if government impose tariff on 
agricultural product? 

– factor prices will change 
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Analysis of tariff 

Reduction of tariff barriers on grain would cause production to be reallocated from point E to 

point A; consumption would be reallocated from E to B. If grain production is relatively capital 

intensive, the relative price of capital would decrease as a result of these reallocations. 
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Model of Exchange 

• No production 

• n goods  

• m individuals 

• Consumption bundle: xi=(xi
1,x

i
2,…, xi

n) 

• Utility: ui(xi) where i = 1. . .m 

• Individuals are price-takers 

• Initial endowments of the goods 
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Model of Exchange 

• Consumers maximize utility under budget 
constraint  

– Total amount spent on consumption = Total value 
of his or her endowment 

 

• Marshallian demand function:  

– Continuous 

– Homogeneous of degree 0 in all prices and income 
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Walrasian Equilibrium 

• A price vector p* and allocation x 

 

 

• Demand equals supply in each market 

• Walras’ law  

– The value of all quantities demanded must equal 
the value of all endowments 
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Technical: Existence Proof 

• Normalize these to form a new set of prices 

 

 

 

 

 

• Equilibrium Price 
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Technical: Existence Proof 

• Normalize these to form a new set of prices 

 

 

 

 

 

• Equilibrium Price 
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Technical: Existence Proof 

• Brouwer’s fixed point theorem 
– Any continuous function from a closed compact set onto itself  
– Will have a ‘‘fixed point’’ such that x=f(x) 

• New set of prices, p1=f(p0)=p0+kz(p0) 
•  p0 – arbitrary set of prices 
•  k – positive constant  

– Continuous function 
– Will map one set of normalized prices into another 
– Meet the conditions of the Brouwer’s fixed point theorem 

• Fixed point: p*=f(p*)=p*+kz(p*)   
– We have: z(p) = 0 (excess demand) 
– Thus, p* is an equilibrium price vector 
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13.7 

A Graphical Illustration of Brouwer’s Fixed Point Theorem 

Because any continuous function must cross the 45 line somewhere in the unit 

square, this function must have a point for which f (x*) = x*. This point is called a 

fixed point. 
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First Welfare Theorem 

• Pareto efficient allocation 

– No alternative allocation in which at least one 
person is better off and no one is worse off 

• First theorem of welfare economics 

– Every Walrasian equilibrium is Pareto efficient 
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13.8 

The First Theorem of Welfare Economics 

With initial endowments at point E, individuals trade along the price line PP until 

they reach point E*. This equilibrium is Pareto efficient. 
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Second Welfare Theorem 

• The second theorem of welfare economics  

– For any Pareto optimal allocation, there exists a 
set of initial endowments and a related price 
vector such that this allocation is also a Walrasian 
equilibrium 
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13.9 

The Second Theorem of Welfare Economics 

If allocation Q* is regarded as socially optimal, this allocation can be supported by 

any initial endowments on the price line P’P’. To move from E to, say, Q would 

require transfers of initial endowments. 
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13.3  A Two-Person Exchange Economy 

• A simple two-person, two-good exchange 

economy 

• Total quantities of the goods are fixed:  

x = y = 1,000 

• Utility functions:  

UA(xA,yA) = xA
2/3

 yA
1/3  and UB(xB,yB) = xB

1/3
 yB

2/3  

• Lagrangian expression 

ℒ (xA,yA) = UA(xA,yA) +λ[UB(1,000-xA,1,000-yA)-ŪB] 

ℒ (xA,yA) = xA
2/3

 yA
1/3+λ[(1,000-xA)1/3(1,000-yA)2/3-ŪB] 
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13.3  A Two-Person Exchange Economy 

• First order conditions: 
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• We get: 

• This equation allows us to identify all the 

Pareto optimal allocations in this exchange 

economy 



13.3  A Two-Person Exchange Economy 

• Equilibrium price ratio 

• We need to know the marginal rate of 

substitution 
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Social Welfare Function 

• ranking potential allocations of resources 
based on the utility they provide to individuals 

Social welfare = SW[U1(x
1), U2(x

2), …, Um(xm)] 

• Utilitarianism: 

 

• Rawlsian: 

SW(U1, U2,…,Um) =Min[U1, U2,…,Um] 
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Model of Production  

• Includes factors of production  
– Whose prices also will be determined 

• Firms (r ) involved in production 
– Outputs: positive sign; Inputs take a negative sign 

– Maximize profits: firm’s production plan 

• An n x 1 column vector, yj (j = 1 . . . r), which contains 
both positive and negative entries 

– Each individual owns a predefined share, si, of the 
profits of all firms 
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Model of Production  

• Production functions  

– Assumed to be sufficiently convex to ensure a 
unique profit maximum for any set of output and 
input prices 

• Profits:   
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Model of Production  

• Labor supply 

– Individuals are endowed with a certain number of 
potential labor hours 
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Model of Production  

• Walrasian equilibrium price vector (p*) 
– A set of prices at which demand equals supply in 

all markets simultaneously 

 

• Excess demand functions 
 

– Are homogeneous of degree 0 in prices 
• Any price vector for which z(p*) = 0 will also 

have the property that z(tp*) = 0 and t > 0 
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Welfare Function 

• The first theorem continues to hold 
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13.10 

Production Increases the Number of Feasible Allocations 

Any point on the production possibility frontier PP can serve as the dimensions of 

an Edgeworth exchange box. 
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Computable General Equilibrium 
Models 

• Two advances - rapid development of general 
equilibrium models in recent years 
– The theory has been generalized to include many 

features of real-world economies 
– Expanding computer capacity has made it possible to 

study more complex models 

• Procedure 
– Starts by defining the number of goods to be included 

in the model 
– The goal of the model: 

• To solve for the equilibrium prices for these goods and how 
they may change when conditions change 
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Insight from General Equilibrium 

• Prices are endogenous in economic models 

• All firms and productive inputs are owned by 
households 

• Any model with a government sector  

– Is incomplete if it does not specify how tax 
receipts are used 
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Insight from General Equilibrium 

• The “bottom line” in any policy evaluation 

– Is the utility of households 

– Firms and governments are only intermediaries in 
this accounting 

• All taxes distort economic decisions along 
some dimension 

– The welfare costs of the distortions must be 
weighed against the benefits of such taxes 
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13.4  A Simple General Equilibrium Model 

• Assume:  

• Two households, two consumer goods (x and y), 

and two inputs (k and l) 

• Households 

• Each has an endowment of k and l 

• Obtain utility from consuming x, y, and leisure (lr) 

• Simple Cobb-Douglas utility functions 
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13.4  A Simple General Equilibrium Model 

• Production of x and y   

• Cobb-Douglas technologies 
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13.4  A Simple General Equilibrium Model 

• Price normalization scheme 

px + py + pk + pl = 1 

• Solving for these prices yields 

px = 0.363; py = 0.253; pk = 0.136; pl = 0.248 

• Total production: x = 23.7; y = 25.1 

• Utility-maximizing choices for household 1: 

x1 = 15.7; y1 = 8.1; lr = 9.2; U1 = 13.5 

• Utility-maximizing choices for household 2:  

x1 = 8.1; y1 = 11.6; lr = 5.9; U1 = 8.75 
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13.5  The Excess Burden of a Tax 

• The government  

• Imposes an ad valorem tax of 0.4 on good x 

• Wedge between what demanders pay for this 

good x (px)  

• And what suppliers receive for the good (p’x = 

(1 – t)px = 0.6px) 

• Revenues generated by this tax 

• Rebated to the households in a 50–50 split 

• New equilibrium prices 

px = 0.472; py = 0.218; pk = 0.121; pl = 0.188 
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13.5  The Excess Burden of a Tax 

• Total production: x = 17.9; y = 28.8 

• Allocation of resources has shifted significantly 

toward y production 

• Utility-maximizing choices for household 1: 

x1 = 11.6; y1 = 15.2; lr = 11.8; U1 = 12.7 

• Worse off  

• Utility-maximizing choices for household 2:  

x1 = 6.3; y1 = 13.6; lr = 7.9; U1 = 8.96 

• Better off 
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Computable general equilibrium models 

• General methodology - Computable 

general equilibrium (CGE) models  

– Assume various forms for production and 

utility functions 

– Choose particular parameters of those 

functions based on empirical evidence 

– Generate general equilibrium solutions 

• Then compare with real-world data 
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Computable general equilibrium models 

• General methodology - Computable 

general equilibrium (CGE) models  

– ‘‘Calibrate’’ the models to reflect reality 

– Vary various policy elements in the 

models  

• Provide general equilibrium estimates of the 

overall impact of those policy changes 
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Trade models 

• The impact of trade barriers 

– Necessary to introduce a large degree of 

product differentiation into individuals’ 

utility functions 

– Incorporate increasing returns-to-scale 

technologies into their production sectors 

• Capture one of the primary advantages of 

trade for smaller economies 

• Impact of the North American Free Trade 

Agreement (NAFTA) 
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Tax and transfer models 

• Evaluate potential changes in a nation’s 

tax and transfer policies 

– Considerable care must be taken in 

modeling the factor supply side 

• The Dutch Micro Macro Model to Analyze 

the Institutional Context (MIMIC0 model 
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Environmental models 

• Understanding the ways in which 

environmental policies may affect the 

economy 

– Production of pollutants - major side effect 

of the other economic activities 

– Specify environmental goals in terms of a 

given reduction in these pollutants 

• Economic costs of various strategies 

– Study the impact of environmental policies 

on income distribution 
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Environmental models 

• Assessing CO2 reduction strategies 

– The General Equilibrium Environmental 

(GREEN) model 

• Developed by the Organization for Economic 

Co-operation and Development (OECD) 
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Regional and urban models 

• To examine economic issues that have 

important spatial dimensions 

– Widely used to examine the local impact 

of major changes in government spending 

policies 
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