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 All relevant details on EC4101 are in the 
syllabus 

 
3 suggestions 

• Please follow the textbook and lectures closely. 

• Use the material on the slides to guide you through the material in 
the textbook. 

• Try solving all the assignments even if you might not be the 
designated student. 
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 What is the job of an economic theorist? 



• The Raft of Medusa (1819) - Jean Louis Théodore Géricault 

• Moment from the aftermath of the wreck of the French naval frigate 
Méduse, which ran aground off the coast of today's Mauritania on July 5, 
1816 

• Take a real situation or story or thought … that exists and represent it in a 
useful manner 

sourcefiles/The_Raft_of_the_Medusa.pdf
sourcefiles/The_Raft_of_the_Medusa.pdf
http://upload.wikimedia.org/wikipedia/commons/f/f1/G%C3%A9ricault_-_La_zattera_della_Medusa.jpg


• Mars Rover Spirit (2004) 

• The objective is to do something that is 
practically useful 

http://marsrover.nasa.gov/newsroom/pressreleases/20110104b.html


What is EC 4101 about? 
• Microeconomic theory is about modeling individual 

consumer and firm behavior in a mathematically to allow 
technically mature analysis. 
 

• EC 3101 gives some description of these models – focuses 
on covering many topics rather than details 
– This description not enough for serious analysis 

 

• EC4101 focuses on giving you the full technical description 
of those models 
– This description is useful for serious analysis 

 

• Of course, that means we cannot cover as many topics. 



Chapter 2 

Mathematics for 
Microeconomics 

     This file is a summary of the basic maths that you 

should know (but we do not have the time to go over in 

lecture). So keep it handy for future consultation. 

  

   You will notice at a few places parenthesis such as 

“(’’ and “)’’ not aligned properly. This is not my fault – it’s 

the slightly distorted pdf conversion. 



The Mathematics of Optimization 

• Economic theories assume that an economic 
agent is seeking to find the optimal value of 
some function 

– consumers seek to maximize utility 

– firms seek to maximize profit 

• This chapter reviews the mathematics that go 
into these problems 



Functions with One Variable 

• Simple example: Manager of a firm wants to 
maximize profits 
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Functions with One Variable 

• Vary q to see where maximum profit occurs 

– an increase from q1 to q2 leads to a rise in  
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Functions with One Variable 

• If output is increased beyond q*, profit will 
decline 

– an increase from q* to q3 leads to a drop in  
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Derivatives 

• The derivative of  = f(q) is the limit of 
/q for very small changes in q 
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• The value depends on the value of q1 



Value of a Derivative at a Point 

• The evaluation of the derivative at the 
point q = q1 can be denoted 
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First Order Condition for a Maximum 

• For a function of one variable to attain its 
maximum value at some point, the 
derivative at that point must be zero 
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Second Order Conditions 

• The first order condition (d/dq) is a 
necessary condition for a maximum, but it 
is not a sufficient condition 
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If the profit function was u-shaped, 

the first order condition would result 

in q* being chosen and  would 

be minimized 



Second Order Conditions 

• This must mean that, in order for q* to be 
the optimum,  
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Second Derivatives 

• The derivative of a derivative is called a 
second derivative 

• The second derivative can be denoted by 
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Second Order Condition 

• The second order condition to represent a 
(local) maximum is 
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Rules for Finding Derivatives 
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Rules for Finding Derivatives 

– a special case of this rule is dex/dx = ex 
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Rules for Finding Derivatives 

• Suppose that f(x) and g(x) are two functions 
of x and f’(x) and g’(x) exist 

• Then 
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Rules for Finding Derivatives 
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Rules for Finding Derivatives 
• If y = f(x) and x = g(z) [so y = f(g(z))] and if 

both f’(x) and g’(x) exist, then: 
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– this is called the chain rule   

– allows us to study how one variable (z) 

affects another variable (y) through its 

influence on some intermediate variable (x) 



Rules for Finding Derivatives 
• Some examples of the chain rule include 

axax
axax

aeae
dx

axd

axd

de

dx

de


)(

)(
  10.

   
x

a
axdx

axd

)ax(d

axlnd

dx

axlnd 11)()()(
  11. 

x
x

xdx

xd

xd

xd

dx

xd 2
2

1)(

)(

)][ln()][ln(
  12.

2

2

2

22





Example of Profit Maximization 
• Suppose that the relationship between profit 

and output is 

 = 1,000q - 5q2 

• The first order condition for a maximum is 

d/dq = 1,000 - 10q = 0 

q* = 100 

• Since the second derivative is always   -10,    
q = 100 is a global maximum 



Functions of Several Variables 

• Most goals of economic agents depend on 
several variables 

– trade-offs must be made 

• The dependence of one variable (y) on a 
series of other variables (x1,x2,…,xn) is 
denoted by 
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Partial Derivatives 

• The partial derivative of y with respect to x1 
is denoted by 
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– in calculating the partial derivative, all of 

the other x’s are held constant 



Partial Derivatives 

• A more formal definition of the partial 
derivative is 
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Calculating Partial Derivatives 

212

2

211

1

2

221

2

121

2

2

cxbxf
x

f

bxaxf
x

f

cxxbxaxxxfy













and     

then ,),( If 1.

2121

21

2

2

1

1

21

bxaxbxax

bxax

bef
x

f
aef

x

f

exxfy

















   and  

then  If 2. ,),(



Calculating Partial Derivatives 

2

2

21

1

1

2121

x

b
f

x

f

x

a
f

x

f

xbxaxxfy













   and  

then  If 3. ,lnln),(



Partial Derivatives 

• Partial derivatives are the mathematical 
expression of the ceteris paribus 
assumption 

– show how changes in one variable affect some 
outcome when other influences are held 
constant 



Second-Order Partial Derivatives 

• The partial derivative of a partial derivative 
is called a second-order partial derivative 
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Young’s Theorem 

• Under general conditions, the order in 
which partial differentiation is conducted to 
evaluate second-order partial derivatives 
does not matter 

jiij ff 



Functions of Several Variables 

• Suppose an agent wishes to maximize 

y = f (x1,x2,…,xn) 

• The change in y from a change in x1 
(holding all other x’s constant) is 
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 – the change in y is equal to the change in x1 

times the slope (measured in the x1 

direction) 
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Total Differential 

• Suppose that y = f(x1,x2,…,xn) 

• If all x’s are varied by a small amount, the 
total effect on y will be 
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First-Order Condition for a Maximum 
• A necessary condition for a maximum of the 

function f(x1,x2,…,xn) is that dy = 0 for any 
combination of small changes in the x’s  

– this can only be true if 

0...21  nfff

•  A point where this condition holds is 

   called a critical point 

nn xfxfxfy  ...2211



Second-Order Conditions 
• This condition is not sufficient to ensure a 

maximum 

– we need to examine the second-order partial 
derivatives of the function f 

– conditions that will make f concave would be 
sufficient for a maximum 



Finding a Maximum 
• Suppose that y is a function of x1 and x2 

y = - (x1 - 1)2 - (x2 - 2)2 + 10 

y = - x1
2 + 2x1 - x2

2 + 4x2 + 5 

• First-order conditions imply that 
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Implicit Functions 
• An “explicit” function which is shown with 

a dependent variable (y) as a function of 
one or more independent variables (x) such 
as 

y = mx + b 

   can be written as an “implicit” function 

y – mx – b = 0 

f(x,y,m,b) = 0 



Derivatives from Implicit Functions 
• It will sometimes be helpful to compute 

derivatives directly from implicit functions 
without solving for one of the variables 
directly 
– the total differential of  g(x,y) = 0 is 

0 = gxdx + gydy 

– this means that 
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Implicit Function Theorem 

• It may not always be possible to locally solve 
implicit functions of the form g(x,y)=0 for 
unique explicit functions of the form y = f(x) 
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Implicit Function Theorem 

• It may not always be possible to locally solve 
implicit functions of the form g(x,y)=0 for 
unique explicit functions of the form y = f(x) 
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The Envelope Theorem 

• The envelope theorem concerns how the 
optimal value for a function changes when a 
parameter of the function changes 

– this is easiest to see by using an example 



The Envelope Theorem 

• Suppose that y (ice cream seller’s profit) is a 
function of x (ice cream output) 

y = -x2 + ax 

• If a (temperature) is assigned a specific value, 
then y becomes a function of x only and the 
value of x that maximizes y can be calculated 



How does the profit depend on temperature? 
Use the Envelope Theorem 

Value of a Value of x* Value of y*(Profit) 

0 0 0 

1 1/2 1/4 

2 1 1 

3 3/2 9/4 

4 2 4 

5 5/2 25/4 

6 3 9 
 

 

Optimal Values of x and y for Alternative Values of a 
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The Envelope Theorem 

• Suppose we are interested in how y* changes 
as a changes 

 

 

• There are two ways we can do this 

– calculate the slope of y* directly 

– apply envelope theorem 
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The Direct Approach 
• To calculate the slope of the function, we 

must solve for the optimal value of x for any 
value of a 

dy/dx = -2x + a = 0 

x* = a/2 

• Substituting, we get 

y* = -(x*)2 + a(x*) = -(a/2)2 + a(a/2) 

y* = -a2/4 + a2/2 = a2/4 



The Direct Approach 
• Therefore, 

dy*/da = 2a/4 = a/2 

 

• We can save time by using the envelope 
theorem (x* may not also be explicit) 

– for small changes in a, dy*/da can be computed by 
holding x at x* and calculating y/a directly from 
y 



The Envelope Theorem Way 

y/ a = x 

• Holding x = x* 

y/ a = x* = a/2 
 

• This is the same result found earlier 



The Envelope Theorem 
• The change in the optimal value of a function 

with respect to a parameter of that function 
can be found by partially differentiating the 
objective function while holding x (or several 
x’s) at its optimal value 
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The Math of Envelope Theorem 

• How did the formula come about? We have 
from maximizing y = f [x1,x2,a] with respect to x1 

and x2 

   y* = f (x1*(a), x2*(a),a) 

• Taking derivative w.r.t. a 
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The Envelope Theorem: Extention 

• This can be extended to the case where y is a 
function of several variables 

y = f(x1,…xn,a) 
 

• Finding an optimal value for y would consist of 
solving n first-order equations  

y/xi = 0    (i = 1,…,n) 



The Envelope Theorem 

• Optimal values for these x’s would be a function 
of a 

 

x1* = x1*(a) 

x2* = x2*(a) 

xn*= xn*(a) 

. 

. 

. 



The Envelope Theorem 

• Substituting into the original objective function 
gives us the optimal value of y (y*) 

y* = f [x1*(a), x2*(a),…,xn*(a),a] 

• Differentiating yields 
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The Envelope Theorem 

• Because of first-order conditions, all terms 
except f/a are equal to zero if the x’s are at 
their optimal values 
 

• Therefore, 
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Constrained Maximization 

• Suppose that we wish to find the values of 
x1, x2,…, xn that maximize 

y = f(x1, x2,…, xn) 
 

   subject to a constraint  

g(x1, x2,…, xn) = 0 



Lagrangian Multiplier Method 

• The Lagrangian multiplier method starts 
with setting up the expression 

 

ℒ = f(x1, x2,…, xn ) + g(x1, x2,…, xn)  

–  is called a Lagrangian multiplier 
 



Lagrangian Multiplier Method 

• First-Order Conditions 

ℒ /x1 = f1 + g1 = 0 

ℒ /x2 = f2 + g2 = 0 
 

. 

ℒ /xn = fn + gn = 0 

. 

. 

ℒ / = g(x1, x2,…, xn) = 0 

ℒ = f(x1, x2,…, xn ) + g(x1, x2,…, xn) 



Interpretation of Lagrangian Multiplier 

• Rate at which the maximum increases as the 
constraint is relaxed – shadow price for the 
constraint 



Constrained Maximization 

• Suppose a farmer had a certain length of 
fence (P) and wished to enclose the largest 
possible rectangular area 

– let x and y be the lengths of the sides 
 

• Problem: choose x and y to maximize the area 
(A = x·y) subject to the constraint that the 
perimeter is fixed at P = 2x + 2y 



Constrained Maximization 

• Setting up the Lagrangian multiplier: 

ℒ = x·y + (P - 2x - 2y) 

 

• The first-order conditions for a maximum are 

ℒ /x = y - 2 = 0 

ℒ /y = x - 2 = 0 

ℒ / = P - 2x - 2y = 0 



Constrained Maximization 

• Since y/2 = x/2 = , x must be equal to y 

– the field should be square 
 

• Since x = y and y = 2, we can use the 
constraint to show that 

x = y = P/4 

 = P/8 



Constrained Maximization 

• Interpretation of the Lagrangian multiplier 

–  suggests that an extra yard of fencing would add 
P/8 to the area 

 

– The Lagrangian multiplier provides information 
about the implicit value of the constraint 

 



• Suppose that we want to maximize 

y = f(x1,…,xn;a) 

   subject to the constraint 

g(x1,…,xn;a) = 0  

• Solve by setting partial derivatives of 

Lagrangian equal to 0 

 

Constrained Maximization & 
Envelope Theorem 



Constrained Maximization & 
Envelope Theorem 

• It can be shown that 

dy*/da = ℒ /a at (x1*,…,xn*;a)  

– the change in the maximal value of y from a 
change in a can be found by partially 
differentiating ℒ and evaluating the partial 
derivative at the optimal point 



Inequality Constraints (Not in the textbook) 

• In some economic problems the constraints 
need not hold exactly 

• Suppose we seek to maximize y = f(x1,x2) 
subject to 

g1 (x1,x2)  0, 

g2 (x1,x2)  0 



Lagrangian 

• We define 

• ℒ = f(x1, x2) + 1 g1 (x1,x2) + 2 g2 (x1,x2)  

• Now we write down the first order 
conditions for this Lagrangian 

• In this case the multipliers have specific 
signs: 1, 2 ≥ 0 

• Complementary slackness: at least one of  
gi (x1,x2)  or i must be zero at solution 



Kuhn-Tucker Conditions 

• Sometimes we have a standard constrained 
optimization problem with the additional 
constraints that the variables be non-negative. 

• In that case we bring in these non-negativity 
constraints as inequality constraints and work 
with the Lagragian the standard way 



Second Order Conditions - Functions of 
One Variable 

• Let y = f(x) 

• A necessary condition for a maximum is that 

dy/dx = f ’(x) = 0 

– to ensure that the point is a maximum, y must be 

decreasing for movements away from it 



Second Order Conditions – Sufficiency 
Condition 

 

• This means that the function f must have a 
concave shape at the critical point 
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Second Order Conditions - Functions of 
Two Variables 

• Suppose that y = f(x1, x2) 

• First order conditions for a maximum are 

y/x1 = f1 = 0 

y/x2 = f2 = 0 

– to ensure that the point is a maximum, y must 
diminish for movements in any direction away 
from the critical point 



Second Order Conditions - Functions of 
Two Variables 

 

f11 < 0, f11 f22 - f12
2 > 0 

 

The rest of the sufficiency conditions will be on a need-

to-know basis  

 



Quasi-Concavity 

• A function U is quasi-concave if for each 
number c the following set is convex 

 ( , ) | ( , )x y U x y c



Duality 

• Any constrained maximization problem has 
a dual problem in constrained minimization  

– focuses attention on the constraints in the 
original problem 



Integration 

• Integration is the inverse of differentiation 

– let F(x) be the integral of f(x) 

– then f(x) is the derivative of F(x) 
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Integration 

• We denote an integral as 

 dxxfxF )()(
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• If f(x) = x then 

– C is an arbitrary constant of integration 



Definite Integrals 

• We can also use integration to sum up the 
area under a function over some defined 
interval 
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Definite Integrals 
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