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Maximization of a Function of
One Variable

/— ™

« Economic theories assume that

—An economic agent Is seeking to find the
optimal value of some function
« Consumers seek to maximize utility
« FIrms seek to maximize profit

« Simple example, 1 = f(q)

—Manager of a firm wants to maximize
profits, 1

 The profits (11) received depend only on the
guantity (q) of the good sold

— —
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Quantity

If a manager wishes to produce the level of output that maximizes profits, then g*
should be produced. Notice that at g*, dm/dq = 0.

\ _/
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Maximization of a EW
One Varia

= ™

* Vary q to see where maximum profit
OCCUrs

—An Increase from g, to g, leads to a rise In
T

ﬂ>0

AQ

— -/
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Maximization of a FW
One Variab

* |f output Is Increased beyond g*, profit will
decline

—An Increase from g* to g, leads to a drop
N7

ﬂ<o

AQ

—

— -/
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Maximization of a Fuery"
b One Variabl .

 Derivatives

—The derivative of = = f(q) Is the limit of

An/Aqg for very small changes in g
—Is the slope of the curve

—The value depends on the value of q,
dz df . f(g,+h)-f(q,)
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Maximization of a FW
One Variabl

28 -

* Value of a derivative at a point

—The evaluation of the derivative at the
point g = g, can be denoted

dr

dq q=0
* In our previous example,

dr

N
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dz
dq

0=03

<0

q=q*
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Maximization of a FL;nr \
One Variabl

28 -

e First-order condition for a maximum

—For a function of one variable to attain its
maximum value at some point, the
derivative at that point must be zero

df
dq

q=0*

— -/
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Maximization of a Functiqp of
One Variable

— ™

* The first order condition (dr/dq)
—|s a necessary condition for a maximum
—But it Is not a sufficient condition

 The second order condition

—In order for g* to be the optimum,

Ccli—”>0forq<q* and (;_”<0forq>q*

- At g*, dn/dg must be decreasing

— The derivative of dn/dg must be negative at g*
_ 3
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qa* qb*
Quantity Quantity
(a) (b)

In (a), the application of the first derivative rule would result in point g * being chosen. This
point is in fact a point of minimum profits. Similarly, in (b), output level g,* would be
recommended by the first derivative rule, but this point is inferior to all outputs greater than
g,* . This demonstrates graphically that finding a point at which the derivative is equal to O is

La necessary, but not a sufficient, condition for a function to attain its maximum value. )
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Maximization of a EW‘
One Varia

= ™

 Second derivative
—The derivative of a derivative
— Can be denoted by:

2 2
d ~ or d '; or f "(q)
dg dg

— -/
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Maximization of a I;W
3 One Varia e

* The second order condition
—To represent a (local) maximum Is:
d°r

~ (). <0
2 _*
dq - q=q

— -/
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1. If a IS a constant, then % =0
X

2. If a Is a constant, then d[a(: (x)] = af '(x)
X

a

3. If a 1S a constant, then ddi = ax
X

a-1

4 dlnx:1

dx X
da* |
5. — =a" Ina for any constant a
dx
. e’
- special case: —=e
G dx
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Rules for Finding W

28 -

» Suppose that f(x) and g(x) are two
functions of x and 7 (x) and g’(x) exist

* Then
6. d[ T (x)+g(x)]

L9049
X
7, Al (Xd)x'g(x)] = £(0)g'00+ T (X)g(x)

9 g00,
g(x) ) _ f'(x)a(x) - f(x)g'(x)
dx [g(¥)]

— -/
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Rules for Finding Der"'

+ If y = f(x) and x = g(z) and if both f(x) and
g’(x) exist, then:

—

9 dy dy dx df dg
dz dx dz dx dz

— This iIs called the chain rule

— Allows us to study how one variable (z)
affects another variable (y) through its
Influence on some intermediate variable (x)

— -/
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Rules for Finding W

» Some examples of the chain rule include:

—

ax

de™  de™ d(ax)_eax.

dx d(ax) dx
d[In(ax)] _d[In(@x)] d(ax) _ 1

11. = —-a=
dx d(ax) dx ax

dlin(x*)] _d[In(x*)] d(x*) 1
dx  d(x®) dx x5

10. a=ae

12.

— -/
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EXAMPLE 2.1 Profit Maximization

.« Suppose that the relationship between profit
and output Is

n = 1,000q - 597
* The first order condition for a maximum Is
dn/dg =1,000-10g=0
g* =100
* Since the second derivative is always -10,
then g = 100 is a global maximum
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Functions of Severalw

» Most goals of economic agents depend
on several variables
— Trade-offs must be made
* The dependence of one variable (y) on a
series of other variables (X;,X,,...,X,) IS
denoted by
y — f (X11 X2""1 Xn)
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Functions of Severaw

28 -

 Partial derivatives
— Partial derivative of y with respect to x;:

oy o

— Oor — orf or f,
0%, 0%,

- All of the other x’s are held constant

- A more formal definition iIs

of i f(x +h,Xz,....xn) = T (X, X2,..., Xn)

@Xl - h—0 h

X2 y...9yXn

— -/
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(1 Ify = (X, X,) =ax +bxx, +cx;, then N
a f, =2ax, +bx, and a f, =bx, +2cx,

0%, OX,

2. 1fy = f(x,%,)=e*" then

ﬂ — f1 _ aeax1+bX2 and ﬂ — f2 — beax1+bx2

0%, OX,

3. Ify=1(x,X)=alnx +blnx,, then

i —fl:i and i :f2:R

0% X 2 2
—
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Functions of Several Variables

s TN

o Partial derivatives

— Are the mathematical expression of the
ceteris paribus assumption

—Show how changes in one variable affect
some outcome when other influences are
held constant

e We must be concerned with units of
measurement

— —
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Functions of Severaw

28 -

» Elasticity

— Measures the proportional effect of a
change in one variable on another

—Unit free
—Of y with respect to x Is

Ay
A AX Y OX Y
X

— -/
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EXAMPLE 2.2  Elasticity and Functional Form

.° For: y = a + bx + other terms
* The elasticity Is:
X X X
OX Y y a+bx+---

* €, Is not constant

— It Is Important to note the point at which the
elasticity Is to be computed

€,
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EXAMPLE 2.2  Elasticity and Functional Form

. e Fory=ax"
* The elasticity Is a constant:

:8y.x X

—abx""-— =D

€ b
oX Y ax

y,X

e Foriny=Ina+blInx

* The elasticity Is: |
_8y.x_b_alny
X y_ ~ dlnx

 Elasticities can be calculated through
logarithmic differentiation

€y x
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Functions of Severw

h —

» Second-order partial derivatives
— The partial derivative of a partial derivative

o(of 1ox) 8% f

OX, OX; X,

J

— -/
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-0

—

1.y = f(x,X,)=ax’ +bxx, +cx:, then
f,,=2a; f,=Db; f,,=Db; f,=2cC
2.y = f(x,x,)=e" then

ax; +bx,

ax, + bx2

2 . .
f,,=a% ; f,, =abe

ax; +bx, . _ bzeax1+bx2

f,, =abe £, =

3. 1f y=1(x,x,)=alnx +blnx,, then
f11 — _ax1_2; f12 =0; f21 =0; f22 — —bX2_2

—
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Functions of Several Variables

—

* Young's theorem
—Under general conditions

—The order in which partial differentiation Is
conducted to evaluate second-order
partial derivatives does not matter

fi= T

—
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Functions of Several Variables

—

» Second-order partials

—Play an important role in many economic
theories

— A variable’s own second-order partial, f;

« Shows how 0y/ox; changes as the value of x
Increases

- ;. < 0 Indicates diminishing marginal
effectiveness

—
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Functions of Severalw

28 -

* The chain rule with many variables

— Y = T(X1,X5,X3)
- Each of these x’s Is itself a function of a single
parameter, a

-y = f[xy(a),Xx(a),%3(a)]

—How a change in a affects the value of y:
dy of dx1 of dx, af ~ax,

da ox, da ax da 8x3 da

— -/
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Functions of Severaw

28 -

* If X5 = a, then: y = f[x,(a),x,(a),a]
—The effect of aon y:

- A direct effect (which is given by f,

 An indirect effect that operates only through
the ways in which a affects the x's

dy o dx1 of dx, af
da ax da ax da 6a

— -/
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Functions of Several Variables

/— ™

* Implicit functions

—If the value of a function Is held constant

« An implicit relationship Is created among the
Independent variables that enter into the
function

- The Independent variables can no longer take
on any values
— But must instead take on only that set of values

that result in the function’s retaining the required
value

— —
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Functions of Severw

* Implicit functions ]

— Abllity to quantify the trade-offs inherent In
most economic models

» y = f(X;,X,); Implicit function: x,=g(x,)
y=0=f(x,%)=f(x,9(x))

Differentiate with respecttox,: 0= f, + f, -

dg(x,)
dx,

Rearranging terms: dg(x,) = dx — _h
dx, dx f,
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EXAMPLE 2.3 Using the Chain Rule

~ » A pizza fanatic

» Each week, he consumes three kinds of pizza,
denoted by x4, X,, and X,

‘ » Cost of type 1 pizza is p per pie
» Cost of type 2 pizza is 2p
» Cost of type 3 pizza is 3p
 Allocates $30 each week to each type of pizza

* How the total number of pizzas purchased is
affected by the underlying price p
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EXAMPLE 2.3 Using the Chain Rule

K Quantity purchased:
» X,=30/p; x,=30/2p; X3=30/3p

* Total pizza purchases:

* Y = 1X0(P), X2(P), X3(P)] = X1(P) + X2(P) + X3(P)
* Applying the chain rule:

C_y:fd_x_|_f di_Ff dX

dp dp dp dp
=-30p*-15p~°-10p~° =-55p~°
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EXAMPLE 2.4 A Production Possibility Frontier—Again

. A production possibility frontier for two goods
of the form
X%+0.25y2=200
* The implicit function:
| dy —-f, -2x -4x

X

dx f, 05y vy ‘

y
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Maximization of Function;i of

Several Variables
* Suppose an agent wishes to maximize

y = f(X;,X5,...,X0)
—The change in y from a change In x,
(holding all other x’s constant) is

- Equal to the change in x,; times the slope
(measured in the x; direction)

of
dy = 8_x1 dx, = f,dx,

—

S
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Maximization of Functions of
Several Variables

s TN

e First-order conditions for a maximum

—Necessary condition for a maximum of the
function f(x,,X,,...,x,) Is that dy = O for any
combination of small changes in the Xx’s:

f,=f,=...=f =0
« Critical point of the function
— Not sufficient to ensure a maximum

» Second-order conditions, f; < 0
— Second partial derivatives must be negative

— —

© 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as 37
permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use.




EXAMPLE 25  Finding a Maximum

. Suppose that y Is a function of x, and X,
= - (% - 1)2- (X, - 2)2 + 10
Y =-X2 42X - X2+ 4X, + 5

* First-order conditions imply that

8y__2x +2=0 .
aX OR X1 =1
%y =-2X,+4=0 X, =2
OX,
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The Envelope Theorem

s TN

* The envelope theorem

— How the optimal value for a function changes
when a parameter of the function changes

» A specific example: y = -x? + ax
— Represents a family of inverted parabolas
 For different values of a

—Is a function of x only
- |If a Is assigned a specific value
« Can calculate the value of x that maximizes y

— —
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N

Value of a Value of x* Value of y*

0 0 0

1 L
1 2 4
2 1 1

3 9
3 2 1
4 2 4

5 2
5 2 4
6 3 9

.
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( N
yﬁr
10 -
y*=fla)
or The envelope theorem
ol states that the slope of the
relationship between y (the
71 maximum value of y) and
the parameter a can be
6 found by calculating the
slope of the auxiliary
51 relationship found by
substituting the respective
4r optimal values for x into the
objective function and
3 )
calculating dy/oa.
2 I
] -
I I I I I I
o 1 2 3 4 5 6 a
\ _)
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The Envelope Theorem

s TN

* |f we are interested Iin how y* changes as
a changes

— Calculate the slope of y directly

—Hold x constant at its optimal value and
calculate oy/oa directly (the envelope
theorem)

— —
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The Envelope TW

= ™

» Calculate the slope of y directly

— Must solve for the optimal value of x for
any value of a

dy/dx =-2x +a=0; x*=a/2

— Substituting, we get
y* = -(x*)? + a(x*) = -(a/2)? + a(a/2);
y* = -a%/4 + a2 = a?/4
* Therefore, dy*/da = 2a/4 = a/2

— -/
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The Envelope Th,

28 -

* Using the envelope theorem

—For small changes in a, dy*/da can be
computed by holding x at x* and
calculating oy/oa directly from y

oyl oa = X
—Holding x = x*

oyl ca =x*=al2

— -/
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The Envelope Theorem

/— ™

* The envelope theorem

—The change In the optimal value of a
function with respect to a parameter of
that function

—Can be found by partially differentiating
the objective function while holding x (or
several x’s) at its optimal value

dy x a\ /
L o
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The Envelope Th,

28 -

* Many-variable case
— y Is a function of several variables
y = f(Xq,...X,@)
— Finding an optimal value for y: solve n
first-order equations:
oylox;(=0 (1=1,...,n)

—Optimal values for these x’s would be a
function of a

X1 = X "(@); XoF = %%(@); .5 X, = Xq"(a)

— -/
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The Envelope TW

= ™

* Many-variable case

— Substituting into the original objective
function gives us the optimal value of y

(y*)

y* =1 [x*(@), x2*(@),--..x,*(a),al

— Differentiating yields
dy* of dx, of dx of dx, of
= — 4 — —= 4 +— —"4
da ox, da o0x, da ox, da oa
dy* of
da oa

— -/
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EXAMPLE 2.6 The Envelope Theorem: Health Status Revisited
Ly = (% - 1)2- (%o - 2)2+ 10
« We found: x,*=1, x,*=2, and y*=10
e Fory=-(x;-1)°-(X,-2)*+a
¢ X*=1, X,*=2
 y*=a and dy*/da =1
» Using the envelope theorem:

dy*_of _,
da oOa
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Constrained Maximization

—

 What If all values for the x’s are not
feasible?

—The values of x may all have to be > 0

— A consumer’s choices are limited by the
amount of purchasing power available

 Lagrange multiplier method

—One method used to solve constrained
maximization problems

—
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Lagrange Multiplier Met:tod

—

» Lagrange multiplier method

— Suppose that we wish to find the values of
X1, X5,..., X, that maximize:

y = f(Xq, X5,..0, X))
—Subject to a constraint: g(x;, X,,..., X,) =0
* The Lagrangian expression
L= 1(Xq, Xoyeeey X0 ) + AQ(Xq, X5,..ty X0)
— A\ Is called the Lagrange multiplier
- &= f, because g(x,, X5,..., X,) =0
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Lagrange MultipliWl

28 -

* First-order conditions

— Conditions for a critical point for the
function &

0L 10x, =f, + Ag, = 0
0L 10X, =1, + Ag, = 0

oZlox,=f +Ag,=0
0Z IO\ = d(Xq, Xp,..0, X)) =0

— -/

© 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as 51
permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use.




Lagrange Multiplier Method

—

* First-order conditions

—Can generally be solved for x4, X,,..., X,
and A

—The solution will have two properties:

» The x's will obey the constraint

- These x’s will make the value of £ (and
therefore f) as large as possible

—
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Lagrange Multiplier Method

s TN

* The Lagrangian multiplier (1)
— Important economic interpretation
—The first-order conditions imply that
f,/-g, =1,/-9, =...=1 /-, = A

- The numerators measure the marginal benefit
of one more unit of x;

« The denominators reflect the added burden
on the constraint of using more Xx;

— _/
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Lagrange Multiplierw

28 -

* The Lagrangian multiplier (1)

— At the optimal x;'s, the ratio of the marginal
benefit to the marginal cost of x; should be
the same for every x

— A Is the common cost-benefit ratio for all x

_ marginal benefit of x,
marginal cost of x.

A

— -/
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Lagrange Multiplier Method

s TN

* The Lagrangian multiplier (1)
— A high value of A indicates that each x; has
a high cost-benefit ratio

—A low value of A indicates that each x; has
a low cost-benefit ratio

— A = 0 implies that the constraint is not
binding

— —
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Constrained Maximization

—

» Duality

— Any constrained maximization problem
has a dual problem in constrained
minimization

« Focuses attention on the constraints in the
original problem

—
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Constrained Maximization

s TN

* Individuals maximize utility subject to a
budget constraint
—Dual problem: individuals minimize the

expenditure needed to achieve a given
level of utility

* FiIrms minimize the cost of inputs to
produce a given level of output

— Dual problem: firms maximize output for a
given cost of inputs purchased

~— —
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EXAMPLE 2.7 Constrained Maximization: Health status yet again

"« Individual's goal is to maximize
* Y=-X2+2X,-X,2+4X,+5
* With the constraint: X;+X,=1 or 1-X,-X,=0
» Set up the Lagrangian expression:
© &= =X 22X -X,2+4X,+5 + A(1-X;-X5)

* First-order conditions:

0F [0X, = -2X;+2-L. =0

0F [0X, = -2X,+4-). = 0

0Z 10k = 1-X;-X, =0
 Solution: x,=0, x,=1, A=2, y=8
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EXAMPLE 2.8 Optimal Fences and Constrained Maximization

~ » Suppose a farmer had a certain length of
fence (P)

* Wished to enclose the largest possible
‘ rectangular area — with x and y the lengths of the
sides

* Choose x and y to maximize the area (A = x-y)

« Subject to the constraint that the perimeter is
fixed at P = 2x + 2y
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EXAMPLE 2.8 Optimal Fences and Constrained Maximization

. * The Lagrangian expression:
Z=xy+ AP -2x-2y)
* First-order conditions
oZ[ox=y-2L=0
| 0L 10y =x-21=0
0L Ioh=P-2x-2y=0 |

* y/[2 =X/2 = A, then x=y, the field should be
square
« Xx=yandy = 2A, then

Xx=y=P/4and A =P/8
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EXAMPLE 2.8 Optimal Fences and Constrained Maximization

~ * Interpretation of the Lagrange multiplier

* A suggests that an extra yard of fencing would
add P/8 to the area

* Provides information about the implicit value of
the constraint

'+ Dual problem

* Choose x and y to minimize the amount of fence |
required to surround the field ‘

minimize P = 2x + 2y subjectto A = x-y
« Seftting up the Lagrangian:
ZP =2x+ 2y + AP(A - xy)
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EXAMPLE 2.8 Optimal Fences and Constrained Maximization

. » Dual problem
* First-order conditions:

0&Plox =2 -APy=0

0&Ploy =2 -AP-x=0
0&PIoAP=A-xy=0

« Solving, we get: x =y = A2

« The Lagrangian multiplier AP = 2A-1/2
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Envelope Theorem in CW
h Maximization Prob e

» Suppose that we want to maximize

y = f(Xq,...,X;8)
— Subject to the constraint: g(x,,...,x;a) =0

* One way to solve
— Set up the Lagrangian expression
— Solve the first-order conditions
 Alternatively, it can be shown that
dy*/da = o0& /oa(x,",...,X,*;a)

N— -/
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Inequality Constw,'

28 -

* Maximize y = f(x,,X,) subject to
0(X{,X,) =20, %X, >20,and x, >0

 Slack variables

—Introduce three new variables (a, b, and c)
that convert the inequalities into equalities

—Sqguare these new variables
g(X,X,) -a?2=0;x,-b?=0;and x,-c>=0

— Any solution that obeys these three equality
constraints will also obey the inequality constraints

— -/
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-
—

 Maximizey

L= 1(Xy,%)+ Ay

0(X{,X,) =20, %X, >20,and x, >0

» Lagrange multipliers

‘Inequality ConW

-

= f(x4,X,) subject to

0(Xq,Xp) - @]+ A,[X, - b2+ Ag[X, - €7

—There will
0L 1ox, = f, + 1,0,

o0& [ox, =, + A0,
0¥ /oa =-2a\, =0
o0& /[ob =-2bi, =0

N

oe 8 first-order conditions
+h, =0 0L loc = -2ch; =0
th3=0 0L 10\, = g(X,,X,) -a2 =0
0L 10\, =%, -b2=0
0L 10h; =X, -C2=0
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Inequality Constraints

s TN

 Complementary slackness

—According to the third condition, either a or
A =0
- If a = 0, the constraint g(x,,X,) holds exactly

- If A, = 0, the avallability of some slackness of
the constraint implies that its value to the
objective function is 0

— Similar complementary slackness
relationships also hold for x; and x,

— —
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Inequality Constraints

 Complementary slackness
—These results are sometimes called Kuhn-
Tucker conditions
« Show that solutions to problems involving

iInequality constraints will differ from those

iInvolving equality constraints in rather simple
ways

— Allows us to work primarily with constraints
Involving equalities

— _/
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Second-Order Conditions‘and
Curvature i

s TN

* Functions of one variable, y = f(x)

— A necessary condition for a maximum:
dy/dx =1’(x) =0
« Y must be decreasing for movements away
from it

— The total differential measures the change
INny: dy =f'(x) dx
« To be at a maximum, dy must be decreasing
for small increases in X

— _
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Second-Order Condition

Curvature
* Functions of one variable, y = f(x)

—To see the changes in dy, we must use
the second derivative of y

4(dy) - g7y - LT 000

- Sinced?y <0, f’(X)dx?<0
- Since dx? must be >0, f’(x) <0

« This means that the function f must have a
concave shape at the critical point

—

.dx = f "(x)dx-dx = f "(x)dx*

N _
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EXAMPLE 2.9 Profit Maximization Again

"« Finding the maximum of: = = 1,000q - 502
 First-order condition:
e dn/dg=1,000 — 10g = 0, so g*=100
» Second derivative of the function
* d°n/dg?=-10<0

* Hence the point g*=100 obeys the sufficient
conditions for a local maximum
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Second-Order Conditions‘and
Curvature i

s TN

* Functions of two variables, y = f(x,, X,)
— First order conditions for a maximum:
oylox; =1, =0
oylox, =1,=0
—f, and f, must be diminishing at the critical
point

— Conditions must also be placed on the
cross-partial derivative (f;, = f,,)

— _
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Second-Order Congy
Curvatur

= ™

» The total differential of y: dy =f, dx, + f, dx,
 The differential:
d 2y = (f dx; + fi0x;)dx; + (fodx; + f5,dx,)dx;

d 2y = f,,dx,? + f,dx,dx, + f,,dx, dx, + f,,dX,?
- By Young’s theorem, f,, =f,; and
d 2y = f,,dx,? + 2f,,dx,dx, + f,,dx,?
d 2y =f,,dx,? + 2f,,dx,dx, + f,,dX,?
—d 2%y < 0 for any dx, and dx,, if f;;<0 and f,,<0

—If neither dx, nor dx, is zero, then d 2y < 0 only if
o f1p f - 112> 0
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EXAMPLE 2.10 Second-Order Conditions: Health status
ey =f(X,X,)= - X2+ 2X, - X2 +4X, + 5
* First-order conditions

« f,=-2x,+2=0 and f,=-2x,+4=0

* Or: x;*=1, X,*=2
« Second-order partial derivatives
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Second-Order Conditions and

Curvature
 Concave functions

—f11 fp - 12> 0
—Have the property that they always lie
below any plane that is tangent to them

- The plane defined by the maximum value of
the function is simply a special case of this

property

—

—
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Second-Order Conw
3 Curvature e
» Constrained maximization
—Choose x, and x, to maximize: y = (X, X,)

—Linear constraint: ¢ - b,;x, - b,x, =0

—The Lagrangian: & = f(x,, X,) + A(C - b;X, -
b,X5)
— The first-order conditions:
f, -Ab,=0,f,-Ab, =0,

and c - b;x; -b,x, =0

— -/
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Second-Order Conditions and
Curvature f
o Constrained maximization
—Use the “second” total differential:

d 2y = f,,dx,? + 2f,,dx,dx, + f,,dx,?

—

 Only values of x; and x, that satisfy the
constraint can be considered valid
alternatives to the critical point

— Total differential of the constraint
-b, dx; - b, dx, =0, dx, = -(b,/b,)dx;
- Allowable relative changes in x; and X,

N
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Second-Order Condiy \
Curvature

28 -

» Constrained maximization

— First-order conditions imply that f,/f, =
b,/b,, we get: dx, = -(f,/f,) dx,

—Since: d 2y = f,,dx,2 + 2f ,dx,dx, + f,,dX,2

— Substitute for dx, and get
d 2y = f1,0x,* - 261,y /fo)dx,* + fo5(F; 2/657) dx, 2

— Combining terms and rearranging, we get

d 2y = f, 52 - 26350, f5 + f5,f,2 [dx, %/ £,7]

— -/
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Second-Order Conditions and
Curvature

s TN

 Constrained maximization

—Therefore, for d 2y < 0, it must be true that
f11 152 - 2,0, + f,,f2 <0

 This equation characterizes a set of functions
termed guasi-concave functions

* Quasi-concave functions

—Any two points within the set can be joined
by a line contained completely in the set

— —
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EXAMPLE 2.11 Concave and Quasi-Concave Functions

| oy = F(X1,X0) = (X X)X
* Where x, >0,x,>0,and k>0

« No matter what value k takes, this function is
‘ guasi-concave

* \WWhether or not the function Is concave
depends on the value of k
* If k < 0.5, the function is concave
* If k> 0.5, the function is convex
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( h

(a) k=0.2 (b) k=0.5 (k=10

In all three cases these functions are quasi-concave. For a fixed y, their level
curves are convex. But only for k =0.2 is the function strictly concave. The case k
= 1.0 clearly shows nonconcavity because the function is not below its tangent

plane.
\ J
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Homogeneous Functions
A

s TN

* A function f(x,X,,...X,) IS said to be
homogeneous of deqgree K If

f(tX,,tX,,. .. 1X ) = t*F(X, X5, ... X))

—When k = 1, a doubling of all of its
arguments doubles the value of the
function itself

—When k = 0, a doubling of all of its
arguments leaves the value of the function
unchanged

— _
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Homogeneous Functions

—

* |f a function iIs homogeneous of degree k

— The partial derivatives of the function will
be homogeneous of degree k-1

» Euler's theorem, homogeneous function

— Differentiate the definition for homogeneity
with respect to the proportionality factor t

Kt (X .., X,) = X (tXq, .. 1) + o+ X f (X, X )

« There is a definite relationship between the
value of the function and the values of its
partial derivatives

— —
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Homogeneous Functions

s TN

A homothetic function

—Is one that is formed by taking a
monotonic transformation of a
homogeneous function

— They generally do not possess the
homogeneity properties of their underlying
functions

— —
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Homogeneous Functions

/— ™

 Homogeneous and homothetic functions

— The implicit trade-offs among the variables
In the function

—Depend only on the ratios of those
variables, not on their absolute values

» Two-variable function, y=f(x,,X,)
— The implicit trade-off between x, and X, Is:
dx,/dx, = -f,/f,
—Tf 1s homogeneous of degree k

— —
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» Two-variable function, y=f(x,,X,)

Homogeneous FW

-

Its partial derivatives will be homogeneous
of degree k-1

The implicit trade-off between x; and x, Is
dx, (DG 0G)  f(D, )

dx,  tUf (tx,tx,)  f,(tx, X))
Lett=1/X,

dx, f,(% /x,,1)

dx,  f,(6/%,])
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EXAMPLE 2.12 Cardinal and Ordinal Properties

"« Function f(X{,X,)=(X,X,)¥
* Quasi-concavity [an ordinal property] - preserved
for all values of k

* |Is concave [a cardinal property] - only for a
narrow range of values of k

« Many monotonic transformations destroy the

concavity of f
* A proportional increase in the two arguments:
f(tx,,1X,) =t X X, = 12K (X, X,)
* Degree of homogeneity - depends on k
+ Is homothetic because 9% _ T, _ k¢ %,

dx, f, N X

ol
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Integratio’

7 ™

* Integration is the inverse of differentiation
—Let F(x) be the integral of f(x)
—Then f(x) Is the derivative of F(x)

T _ = 10

F(x) = j f (x)dx

* If f(x) = x then
2

F(x):jf(x)dx:jxdx:%w

— -/
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Integration

—

e Calculation of antiderivatives

1. Creative guesswork
« What function will yield f(x) as its derivative?
« Use differentiation to check your answer

2. Change of variable

- Redefine variables to make the function
easier to integrate

3. Integration by parts

—
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* |ntegration by parts: duv = udv + vdu
— For any two functions u and v

jduv:uv:judv+jvdu
judv=uv—jvdu

~ _/
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Integratio’

7 ™

» Definite integrals

—To sum up the area under a graph of a
function over some defined interval

* Area under f(x) fromx =atox=Db
area under f (x) » > f (x;)Ax,

X=Db

X=a
L —/
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FIGURE 2.5
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Definite integrals measure the area under a curve by summing rectangular areas
as shown in the graph. The dimension of each rectangle is f(x)dx.
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Integration ’

28 -

« Fundamental theorem of calculus

—Directly ties together the two principal
tools of calculus: derivatives and integrals

—Used to illustrate the distinction between
“stocks’” and “flows

X=Db
area under f (X) = j f (x)dx = F(b) - F(a)
X=a
L —/
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EXAMPLE 2.13 Stocks and Flows

~ « Net population increase, f(t)=1,000e0-02t
* “Flow” concept

* Net population change - is growing at the rate of
2 percent per year

* How much in total the population (“stock”
concept) will increase within 50 years:

t=50 t=50
increase in population = j f (t)dt = j 1,000e”*'dt =
t=0 t=0
50 0.02t |°°
- Ry =222 ) L% 55 000-85,914
;002 | 2
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" « Total costs: C(g)=0.1g2+500
e ( — output during some period
» Variable costs: 0.1g?
* Fixed costs: 500
« Marginal costs MC = dC(q)/dg=0.2q
 Total costs for g=100
* Fixed cost (500) + Variable cost

4=100 100
variable cost = j 0.2qdg= 0.19°| =1,000—-0=1,000
g=0

0

© 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as
permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use.



Differentiating a Defiw

28 -

1. Differentiation with respect to the
variable of integration

— A definite integral has a constant value
— Hence Its derivative Is zero

d_Tf(x)dx
2 =0

dx

— -/
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Differentiating a Definw

28 -

2. Differentiation with respect to the upper
bound of integration

— Changing the upper bound of integration
will change the value of a definite integral
d [F(x)— F(a)]

dff(t)dt
= . — f(x)=0=f(x)

— -/
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Differentiating a Defw

= ™

2. Differentiation with respect to the upper
bound of integration

— |If the upper bound of integration is a

function of X,
g(x)

d j f (t)dt

_d[F(g0) -F@)]
dx dx

d [F(Q(X))] _ dg(x) = f(g(x))g'(x)
dx dx

— -/
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Differentiating a Definw

28 -

3. Differentiation with respect to another
relevant variable

— Suppose we want to integrate f(x,y) with
respect to x

« How will this be affected by changes in y?

d_T f(x,y)dx
d :_[ f, (X, y)dx

dy

— -/
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Dynamic Optimization

* Some optimization problems involve
multiple periods

—Need to find the optimal time path for a

variable that succeeds In optimizing some
goal

—Decisions made in one period affect
outcomes In later periods

— —
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Dynamic Optimiz,

28 -

* FIind the optimal path for x(t)
—Over a specified time interval [t,,t,]

—Changes In x are governed by
dx(t)

- = 0[x(®).c(t).]
« c(t) is used to “control” the change in x(t)

— Each period: derive value from x and ¢
from f [Xx(t),c(1),t]

— -/
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Dynamic Optimi,

28 -

* FIind the optimal path for x(t)

—Each period: derive value from x and ¢
from f [x(t),c(t),t]

— Optimize
jf[x(t),c(t),t]dt

* There may also be endpoint constraints:
X(tp) = X, and X(t,) = x4

— -/
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Dynamic Optimiz‘,'

28 -

* The maximum principle

— At a single point in time, the decision
maker must be concerned with
- The current value of the objective function

- The implied change in the value of x(t) from
its current value of A(t)x(t) given by

d{A(t)x(t)] ) dx(t) | (0 dA(t)
dt dt dt
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Dynamic Optimiz,

28 -

* The maximum principle

— At any time t, a comprehensive measure
of the value of concern to the decision
maker Is:

H = f[x(t),c(t),t]+2(t)g[x(t).c(t),t]+x(t)

« Represents both the current benefits being
received and the instantaneous change in the
value of x

dA(t)
dt

— -/
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. "“‘f)';/namic Optiw

= -

* The maximum principle
— The two optimality conditions

Ist: — oA =f.+49,=0, orf, =-Ag,
oc

2nd : o =f + 109, a/l(t)zO,
X ot

OA(t)
ot

— -/
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Dynamic Optimization

* The maximum principle

—The 1st condition:

« Present gains from ¢ must be balanced
against future costs

—The 2M condition:

« The current gain from more x must be
weighed against the declining future value of
X

— —
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EXAMPLE 2.14 Allocating a Fixed Supply

' » Inherited 1,000 bottles of wine
* Drink them bottles over the next 20 years
* Maximize the utility
o Utility function for wine is given by ufc(t)] = In c(t)
* Diminishing marginal utility: u"> 0, u” <0

 Maximize
20 20
j ufc(t)]dt = j In c(t)dt
0 0
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EXAMPLE 2.14 Allocating a Fixed Supply

|« Let x(t) = the number of bottles of wine
remaining at time t
» Constrained by x(0) = 1,000 and x(20) =0
» The differential equation determining the
evolution of x(t): dx(t)/dt=-c(t)
* The current value Hamiltonian expression

H =Inc(t) + A]—c(t)] + x(t) C;—?

First-order conditions:
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EXAMPLE 2.14 Allocating a Fixed Supply

* For the utility function:

ct) 1yify =0,y <1

ujc(t)| =+
Le(t)] CInc(t) if =0
20 20 y
| Maximize: |ufc(t)]dt=|e" O 4
0 0 /4
Constraints: %z—c(t);

X(0)=1000; and x(20)=0

©2012CengageL ing. All Rights R Ma y not be copied, scanned, or duplicated, in whole or in part, except for
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EXAMPLE 2.14 Allocating a Fixed Supply

Hamiltonian: H = e
4

The maximum principle:

o _ e '[ct) " -1=0,
ocC

and 8—H—O+O+d—/1=0

OX dt
A =k (a constant)

e ' [c()] " =k, or c(t)=

Mytb opied, s

cty + A(—C) + x(t)

I YD) pdt (1)

ned, or duplicated, in whole or in part, except for
a pas wdpttdwbtfl

dA(t)

dt
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Mathematical StV

28 -

A random variable

— Describes the outcomes from an
experiment subject to chance

—Discrete (roll of a die)
— Continuous (outside temperature)

* e.g., flipping a coin

1 if coin is heads
0 1f coin is tails

X =

— -/
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Mathematical Sta,

28 -

* Probability density function (PDF)
— For any random variable

—Shows the probabillity that each outcome
will occur

—The probabillities specified by the PDF
must sumto 1

Discrete case: Continuous case:

n +00
1=1 o
L —/
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FIGURE 2.6 a Binomial Distribution

f(x) fx=1)=p
f(x=0)=1-p
Py ®
| O<p<l
1-p @
-
0 P 1 X

. _/
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FIGURE 2.6 b Uniform Distribution

9 f(x):b—foragxsb

b-a :
:
|
|
|
|
|
|
1
|
1
1
3 a+b b X
2
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FIGURE 2.6 ¢ Exponential

f(x) f(x)=1e™if x>0
f(x)=0 1If x<0

>|af-------

. _/
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FIGURE 2.6 d Normal

( h

f(x)

maxirr11um value ’\/ 272'

V2n

~y/

. _/
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Mathematical St{:\,

28 -

» Expected value of a random variable

—The numerical value that the random
variable might be expected to have, on
average

—Measure of central tendency

Discrete case: Continuous case:

E(x):iznl:xif(xi) E(x)= [ xf (x)d

— -/
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Mathematical SW

h —

* Expected value of a random variable
— Extended to function of random variables

E[g(x)]= j g(x) f (x)dx

Linear function: y =ax+Db

E (y)=E(ax+b)= [ (ax+b) f (x)dx=aE(x) +b

—00

— -/
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Mathematical Sta,

28 -

» Expected value of a random variable

—Phrased In terms of the cumulative
distribution function (CDF) F(x)

« F(X) represents the probability that the

random variable t is less than or equal to x
X

F(x)= | f(t)dt

—00

Expected value of x:  E(X)= j xdF (x)

— -/
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EXAMPLE 2.15 Expected Values of a Few Random Variables

1. Binomial: E(x)=17f (x= )+0?f (x= )=p

b
2. Uniform: E(x) =jbidx=b+7a
- —d

3. Exponential: E(X) = j xAe *dx :%

4. Normal E(x) = I—xe‘X “dx =0

N2z
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Mathematical SW

= ™

* Variance
— A measure of dispersion

— The expected squared deviation of a
random variable from its expected value

00

2 2
2
Var (x)=0? = E[(x— E (X)) J — j (x—E(x))" f(x)dx
—00
L —/
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Mathematical Sta,

28 -

» Variance, Var(x)
— A measure of dispersion

— The expected squared deviation of a
random variable from its expected value

« Standard deviation, o
— The square root of the variance

~+00

Var (x)=o? = E[(x—E(x))sz_[o(x—E(x))2 f(x)dx
k_axz\/\/ar(x):\/gf ]

© 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as 121
permitted in a license distributed with a certain product or service or otherwise on a password-protected website for classroom use.




EXAMPLE 2.16 Variances and Standard Deviations for
Simple Random Variables

1. Binomial: o7 = Zn:(xi —E(X))* f (x)

o =@1-p)’-p+(0-p)*-(1-p)=p-A-p)
O, :\/p(l_ p)

b )2
2. Uniform: j( a+bj bl dx = (blza)
a —a

3. Exponential: o’ =1/4* and o, =1/1

4.Normal: o’ =0, =1

i
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EXAMPLE 2.16 Variances and Standard Deviations for
Simple Random Variables

« Standardizing the Normal
 |f the random variable x has a standard Normal

p

PDF
‘ * It will have an expected value of O
* And a standard deviation of 1
 Linear transformation y =ox + \

» Used to give this random variable any desired
expected value (u) and standard deviation (o)

E(y)=cE(X)+u=pu
Var(y) = 05 =oVar(x) =o’
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Mathematical SEa"

= ™

» Covariance
— Between two random variables (x and y)

—Measures the direction of association
between them

+00 400

Cov(X,y)= I I x—E(X) || y=E(y)]f(x,y)dxdy
—00 —00
L —/
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Mathematical Statistics

/— ™

» Two random variables are independent

— If the probability of any particular value of
one Is not affected by the particular value
of the other than may occur

— This means that the PDF must have the
property that f(x,y)=g(x)-h(y)
—Cov(x,y) =0

 Not sufficient to guarantee the two variables
are statistically independent

— —
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|.. Mathematical St"

= -

 If Xx and y are independent

+00 400

Cov(x,y) = | [ [x—EQIly —E(y)]g(x)h(y)dxdy =0
* Sum of two random variables

E(x+y)= [ [ (x+y)F(x, y)dxdy = E(x)+E(y)
Var(x+y) = | [ [x+y—E(x+y)J f (x, y)dxdy
Var(x+Yy) =Var(x)+Var(y) +2Cov(x, Y)
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m Matrix algebra background

* An nxk matrix Is a rectangular array of
terms

—With i=1,n
—With j=1,k

dp  Qp e Gy

Ay B, e Dy
A=[a;]=

d, d, .. d,
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M Matrix algebra background

* If n=k, AIs a square matrix: a;=a,

» Identity matrix, I, , IS a square matrix where
—g;=11ifi=jand ;=0 If i #

* The determinant of a square matrix, |A|

—Is a scalar found by suitably multiplying
together all the terms in the matrix

 The inverse of an nxn matrix, A,
—Is another nxn matrix, A1,
—Such that: AXA-1=|
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M Matrix algebra background

* A necessary and sufficient condition for the
existence of Al

—|A| #0
* The leading principal minors of an n x n
square matrix A

— Are the series of determinants of the first p
rows and columns of A

—Where p=1,n
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M Matrix algebra background

* An n X n square matrix, A,

—Is positive definite if all its leading principal
minors are positive

—Is negative definite If its principal minors
alternate In sign starting with a minus

e Hesslan matrix

— Formed by all the second-order partial
derivatives of a function
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m Matrix algebra background

e Hessian of f

—If f I1s a continuous and twice differentiable
function of n variables

fll f12 "t fln

FPPIO L P SR

1:nl 1:n2 fnn
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M Concave and convex functions

* A concave function
—Is always below (or on) any tangent to it
—f7(xy) <0
—The Hessian matrix - negative definite

* A convex function
—Is always above (or on) any tangent
—f7(xy) 2 0
—The Hessian matrix - positive definite
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M Maximization

 First-order conditions

— For an unconstrained maximum of a
function of many variables

— Requires finding a point at which the
partial derivatives are zero

e |If the function is concave it will be below its
tangent plane at this point

— True maximum
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M Constrained maxima

* Maximize f(x,,...,X,) subject to the
constraint g(x,,...,X,)=0
— First-order conditions for a maximum:
fi+Agi=0
- Where A Is the Lagrange multiplier
— Second-order conditions for a maximum

- Augmented (“bordered”) Hessian, H,
* (-1)H, must be negative definite
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M Constrained maxima

« Augmented (“bordered”) Hessian, H,

09 9 - 0
0, f11 f12 fln
Hb: 0, f21 1t22 fzn

gn 1:nl fn2 1’-nn
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m Quasi-concavity

* |f the constraint, g, Is linear;

g(Xl, "as ,Xn):C'blxl'b2X2' . .-ann:O
« First-order conditions for a maximum: f.=Ab, ;
1=1,....n

—Quasi-concave function

» The bordered Hessian H, and the matrix H’
have the same leading principal minors
except for a (positive) constant of
proportionality

— H’ follows the same sign conventions as H,
» (-1)H must be negative definite
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Quasi-concavity

e The matrix H’
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