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1 Reading

1. Snyder and Nicholoson, Chapter 3-6, Microeconomic Thoery: Basic Principles

and Extensions, 11th edition, 2012

2. Jehle and Reny, Chapter 1, Advanced Microeconomic Theory, 3rd edition, 2011

2 Preference and Utility

2.1 Preference

1. Consumption set:X � Rn+: (subset of non-negative quadrant of a n-dimensional
space)

This means there are n di¤erent goods. The i-th coordinate means quantity of

the i-th good.

2. Binary relation R on X:

Formally, it is subset of X2: we can use an ordered pair to represent a binary

relation!

When we say xRy, then formally it means (x; y) 2 R.

(Note: if R is too abstract to thing, you can read it as x is related to y in

�R-way�)

3. Complete: for any x; y 2 X, either xRy or yRx or both.
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4. Transitive: for any x; y; z 2 X, if xRy and yRz, then xRz

5. Preference: a complete and transitive binary relation.

We denote � as a preference.

If x � y, we read it as x is at least as good as y.

Sometimes, we write x � y if x � y but y 6� x. (strictly preferred to)

We also write x � y if x � y and y � x. (indi¤erent to)

2.2 Property of Preference

1. monotonic: for all x; y 2 X if xi � yi for all i, then x � y

2. strict monotonic: for all x; y 2 X if xi � yi for all i and for some xi > yi, then
x � y

3. continuous: B(x) and W (x) are closed where B(x) � fy 2 X : y � xg be the
no-worse set of x and W (x) � fy 2 X : x � yg be the no better set of x.

4. convex: for all x; y 2 X, if x � y, then �x+ (1� �) y � y for all 0 � � � 1.

5. strictly convex: for all x; y 2 X, if x � y and x 6= y, then �x + (1� �) y � y
for all 0 � � � 1.

6. quasi-concave: B(x) is a convex set

2.3 Indi¤erence curve

1. It is graphical representation of preference

2. Property:

(a) Under monotonicity, northwest direction is better (why?)

(b) Indi¤erence curve does not cross (why?)
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2.4 Utility

1. A preference � is represented by a utility function U if for all x; y 2 X

x � y if and only if U(x) � U (y)

2. Utility function assigns a number for every consumption bundle: more preferred

bundle gets larger number.

3. Not every preference is represented by a utility function (Example: lexicographic)

4. Ordinal utility: only order matters

5. Marginal rate of substitution of good 1 for good 2:

(a) How many units of good 2 is need to compensate for a reduction in one unit

of good 1?

MRS12 = �
dx2
dx1

����
U(x)=u

(b) Marginal rate of Technical Substitution = - Slope of Indi¤erence Curve

dU =
@U

@x1
dx1 +

@U

@x2
dx2

Along the indi¤erence curve, dU = 0, hence,

dx2
dx1

����
U(x)=u

=
@U(x)=@x1
@U(x)=@x2

6. Technical note:

(a) Continuous and strictly montonic preference implies existence of utility func-

tion.

(b) Quasi-concave utility: for all x; y 2 X, U(�x+(1� �) y) � min fU (x) ; U (y)g
for all 0 � � � 1

(c) Preference is (strictly) convex if and only if utility function is (strictly)

quasi-concave

(d) If utility function is di¤erentiable and preference is (strictly) convex, then

we have diminishing MRS.
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(e) Homothetic preference: MRS between two goods depends only on the ratio
of quantities of two goods

Speci�c utility functions:

1. Perfect substituties: U(x; y) = �x+ �y for some � > 0, � > 0

2. Perfect complements: U(x; y) = minf�x; �yg for some � > 0, � > 0

3. Cobb-Douglas: U(x; y) = x�y1�� for some 0 < � < 1

4. Constant elasticity of substitution (CES): frequently used in macro/IO

U(x; y) =
x�

�
+
y�

�

(a) See appendix for discussion on elasticity of substitution

(b) This is general case for the above three special functions:

i. Perfect substitutes: � = 1

ii. Cobb-Douglas: � = 0

iii. Perfect Complement: � = �1

3 Utility Maximization and Choice

1. Utility Maximization problem:(UMP)

max
x1;x2;:::;xn

U(x1; x2; : : : ; xn)

subject to budget constraint

p1x1 + p2x2 + � � �+ pnxn = I

Lagrangian:

L = U(x1; x2; : : : ; xn) + � (I � p1x1 � p2x2 � � � � � pnxn)
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where �rst-order conditions are

@L
@xi

= 0 for i = 1; : : : ; n

@L
@�

= 0

Interior solution:

MRSij =
@U=@xi
@U=@xj

=
pi
pj

Economic interpration of � and pi.

� =
@U=@xi
pi

pi =
@U=@xi
�

Corner solution: (Economic meaning?)

pi >
@U=@xi
�

2. Marshallian demand function: The optimal solution of UMP

x�1 = x1(p1; : : : ; pn; I)

: : :

x�n = xn(p1; : : : ; pn; I)

3. Property of Marshallian demand function:

(a) Homogeneous of degree zero in prices and income:

x1(�p1 : : : ; �pn; �I) = x1(p1 : : : ; pn; I)

: : :

xn(�p1 : : : ; �pn; �I) = xn(p1 : : : ; pn; I)

for any � > 0

(b) Other properites will be covered in next section.
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4. Indirect utility function:

(a) express optimal level of utility in terms of prices and income.

(b) the optimal-value function of UMP: by putting the marshallian demand

function into the utility function

U(x�1; x
�
2; : : : ; x

�
n)

= U(x1(p1; : : : ; pn; I); x2(p1; : : : ; pn; I); : : : ; xn(p1; : : : ; pn; I))

= V (p1 : : : ; pn; I)

5. Property of indirect utility function:

(a) Non-decreasing in income:
@V

@I
� 0

(b) Non-increasing in prices:
@V

@pi
� 0 for every good i

(c) Homogeneous of degree zero in prices and income: V (�p1 : : : ; �pn; �I) =

V (p1 : : : ; pn; I) for any � > 0

6. Application of indirect utility: lump-sum principle. lump-sum tax is better than

tax on speci�c good.

7. Expenditure minimization problem (EMP; dual problem to the UMP)

min
x1;x2;:::;xn

p1x1 + p2x2 + � � �+ pnxn

subject to budget constraint

U(x1; x2; : : : ; xn) = �U

Lagrangian:

L = p1x1 + p2x2 + � � �+ pnxn + �
�
�U � U(x1; x2; : : : ; xn)

�
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where �rst-order conditions are

@L
@xi

= 0 for i = 1; : : : ; n

@L
@�

= 0

8. Hicksian demand function: the optimal solution to EMP

x�1 = xc1(p1; : : : ; pn; �U)

: : :

x�n = xcn(p1; : : : ; pn;
�U)

9. Properties of expenditure function:

(a) Homogeneous of degree one in prices: xc(�p1 : : : ; �pn; U) = xc(p1 : : : ; pn; U)

for any � > 0

(b) Other properites will be covered in next section.

10. Expenditure function:

(a) express minimum expenditure required given in terms of prices and utility

level

(b) the optimal-value function of EMP: by putting the Hicksian demand func-

tion into the expenditure

p1x1 + p2x2 + � � �+ pnxn
= p1x

c
1(p1; : : : ; pn; �U) + p2x

c
2(p1; : : : ; pn; �U) + � � �+ pnxcn(p1; : : : ; pn; �U)

= E(p1; : : : ; pn �U)

11. Properties of expenditure function:

(a) Homogeneous of degree one in prices: E(�p1 : : : ; �pn; �I) = V (p1 : : : ; pn; I)

for some � > 0

(b) Non-decreasing in prices:
@E

@pi
� 0 for every good i

(c) Concave in prices: (why?)
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(d) Other properites will be covered in next section.

12. Class exercise: Show expenditure function of U (x; y) =
p
xy is E(px; py; U) =

2
p
pxpyU

4 Income and substitution e¤ects

4.1 Elasticity

1. Marshallian Demand Elasticities

(a) (Own) Price elasticity of demand

ei;pi =
@xi
@pi

pi
xi

Note that
@pixi
@pi

= xi + pi
@xi
@pi

= xi [1 + ei;pi ]

Elastic demand: ei;pi < �1,
@pixi
@pi

> 0

Inelastic demand: ei;pi > �1,
@pixi
@pi

< 0

Unit elastic demand: ei;pi = �1,
@pixi
@pi

= 0

(b) Cross-price elasticity of demand

ei;pj =
@xi
@pj

pj
xi

Good i is gross complement for j: ei;pj < 0

Good i is gross substitute for j: ei;pi > 0

(c) Income elasticities of demand

ei;I =
@xi
@I

I

xi

2. Compensated Demand Elasticities
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(a) (Own) Price elasticity of compensated demand

eci;pi =
@xci
@pi

pi
xci

Always non-negative

(b) Cross-price elasticity of compensated demand

eci;pj =
@xci
@pj

pj
xci

Good i is net complement for j: eci;pj < 0

Good i is net substitute for j: eci;pj > 0

(c) Income elasticity of demand

eci;I =
@xci
@I

I

xci

3. Relationship between elasticity is covered in Appendix.

4.2 Two important expressions

1. Roy�s Identity

Since V is optimal-value function for utility maximization problem

L = U(x1; x2; : : : ; xn) + �(I � p1x1 � p2x2 � � � � � pnxn)

Hence, envelop theorem implies

@V

@pi
= ��xi

@V

@I
= �

so that

xi = �

@V

@pi
@V

@I
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2. Shephard�s Lemma

Since E is optimal-value function for langrangian minimization

L = p1x1 + p2x2 + � � �+ pnxn + �(U(x1; x2; : : : ; xn)� �U)

Hence, envelop theorem implies

@E

@pi
= xci

4.3 Changes of Income and Prices

1. Change in income

(a) Normal good:
@xi
@I

� 0

(b) Inferior good:
@xi
@I

< 0

2. Change in own price: substitution e¤ect and income e¤ect

(a) graphical analysis

(b) mathematical analysis (Slutsky�s equation: See appendix for proof)

@x

@px
=
@x

@px

����
U=constant

� x@x
@I

3. Change in other prices

(a) Slutsky�s style equation:

@xi
@pj

=
@xi
@pj

����
U=constant

� xj
@xi
@I

(b) Good i is gross complement for j:
dxi
dpj

< 0

Good i is gross substitute for j:
dxi
dpj

> 0

Note that: gross susbstitute/complement is not symmetric
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(c) Good i is net complement for j:
dxci
dpj

< 0

Good i is net substitute for j:
dxci
dpj

> 0

Note that:

i. net susbstitute/complement is symmetric (Note: Shephard�s lemma and

Young�s theorem)

ii. In two-good world, two goods must be net substitute to each other

iii. For visual illustration of net complements in three-good world, check

Paul A. Samuelson (1974) �Complementarity: An Essay on The 40th

Anniversary of the Hicks-Allen Revolution in Demand Theory�in Jour-

nal of Economic Literature , Vol. 12, No. 4 (Dec., 1974), pp. 1255-1289.

iv. Hick�s second law: almost all are net substitutes. See appendix for
details.

4. Gi¤en�s paradox. positive relationship between price and quantity demanded
when income e¤ect dominates substitution e¤ect for inferior good

4.4 Consumer Welfare of price change

1. Measure of Consumer Welfare of price change

Suppose price in good i changes from p0i to p
1
i

(a) Conumser surplus (CS): area under marshallian demand curve

�CS =

Z p1i

p0i

xi(pi; : : : ; I)dpi

(b) Compensating variation (CV): change in income to needed to be as
happy as before

V (p0i ; : : : ; I) = V (p
1
i ; : : : ; I + CV )
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or

CV = E(p1i ; : : : ; U
0)� E(p0i ; : : : ; U0)

=

Z p1i

p0i

dE(pi; : : : ; U
0)

=

Z p1i

p0i

xhi (pi; : : : ; U
0)dpi (by Shephard�s Lemma)

(c) Equivalent variation (EV): change in income needed to avoid change

V (p0i ; : : : ; I � EV ) = V (p1i ; : : : ; I)

or

EV = E(p1i ; : : : ; U
1)� E(p0i ; : : : ; U1)

=

Z p1i

p0i

dE(pi; : : : ; U
1)

=

Z p1i

p0i

xhi (pi; : : : ; U
1)dpi (by Shephard�s Lemma)

2. Comparison between �CS, CV, and EV

(a) When there is no income e¤ect, all three are the same.

(b) For normal goods,

Price increase: CV > �CS > EV

Price decrease: CV < �CS < EV

(c) For inferior goods

Price increase: CV < �CS < EV

Price decrease: CV > �CS > EV
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4.5 Revealed Preference

1. (a) x is revealed preferred to y: if x and y are feasible under some prices,
and x is chosen

(b) Weak axiom of revealed preference: Suppose x is chosen under prices
p and x̂ is chosen under p̂. If p1x1 + � � � + pnxn � p1x̂1 + � � � + pnx̂n, then
p̂1x1+ � � �+ p̂nxn > p̂1x̂1+ � � �+ p̂nx̂n. In words, if x is revelaed preferred to
x̂, then x̂ is never revealed preferred to x.

(c) Non-positive substitution e¤ect: compensated demand curve is downward

sloping without quasi-concave preference (only needWeak axiom of revealed

preference)

i. Special case proof: Suppose a consumer is indi¤erent on (x1; x2) and

(x̂1; x̂2). Suppose (x1; x2) is chosen under prices (p1; p2) and (x̂1; x̂2) is

chosen under prices (p̂1; p2). Then

p1x1 + p2x2 � p1x̂1 + p2x̂2

p̂1x̂1 + p2x̂2 � p̂1x1 + p2x2

Summing up we have

p1x1 + p̂1x̂1 � p1x̂1 + p̂1x1

p1 (x1 � x̂1) + p̂1(x̂1 � x1) � 0

or

(p1 � p̂1) (x̂1 � x1) � 0

which is non-positive substitution e¤ect! (without any assumption on

preference!)

ii. General case. See appendix.
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5 Appendix.

1. Elasticity of substitution: relative change in the ratio of goods in respondence
to a change in the ratio of prices

"subx;y =
d ln (x=y)

d ln (px=py)

For CES, we have at optimal

dx

dy
= �Uy

Ux
= �

�y
x

���1
= �px

py

so that
x

y
=

�
px
py

� 1
1��

"sub =
d ln (x=y)

d ln (px=py)
=

d(x=y)
x=y

d(px=py)

px=py

=
px=py
x=y

d (x=y)

d(px=py)

=

�
px
py

�1� 1
1��
�

1

1� �

��
px
py

� 1
1���1

=
1

1� �

2. Constrained Optimization: Lagrangian Method

To solve

max
x1;x2;:::;xn

f(x1; x2; : : : ; xn)

subject to a constraint

g(x1; x2; : : : ; xn) = 0

We can write Lagrangian expression

L = f(x1; x2; : : : ; xn) + �g(x1; x2; : : : ; xn)
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The optimal interior solution will satisfy the following conditions:

@L
@x1

=
@f

@x1
+ �

@g

@x1
= 0

: : :
@L
@xn

=
@f

@xn
+ �

@g

@xn
= 0

@L
@�

= g = 0

Note that:

1. We require f to be a di¤erentiable functions.

2. This only work for interior solution. You might need to check corner solution

3. Simple envelope theorem

Maximization of f(x; �) where � is a parameter. Optimal-value function is then

f �(�) = max
x
f(x; �)

and the optimal-solution function is x�(�)

Envelope theorem states:

@f �(�)

@�
=
@f(x; �)

@�

����
x=x�(�)

Note. This also works for minimization problem.

4. General envelope theorem

Maximization of f(x; �) subject to g(x; �) = 0 where � is a parameter.

The Lagrangian is

L(x; �) = f(x; �) + �g(x; �)

Optimal-value function is then

f �(�) = max
x2fg(x;�)=0g

f(x; �)

and the optimal-solution function is x�(�)
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Envelope theorem states:

@f �(�)

@�
=
@L(x; �)
@�

����
x=x�(�);�=�(�)

Note. This also works for minimization problem.

5. Euler�s Theorem

If f is homogenous in degree k, then

kf(x1; x2; : : : ; xn) = x1
@f(x1; x2; : : : ; xn)

@x1
+ � � �+ xn

@f(x1; x2; : : : ; xn)

@xn

Proof.

Recall: homogenous function of degree k implies for all � > 0,

f(�x1; �x2; : : : ; �xn) = �
kf(x1; x2; : : : ; xn):

Di¤erentiate both sides with respect to �,

k�k�1f(x1; x2; : : : ; xn) = x1
@f(�x1; �x2; : : : ; �xn)

@x1
+� � �+xn

@f(�x1; �x2; : : : ; �xn)

@xn

Consider the case � = 1. Then we are done.

6. Slutsky�s equation

Since EMP and UMP give the same outcome we have

xc(px; py; U) = x (px; py; E(px; py; U))

so that partially di¤erentiation gives

@xc

@px
=
@x

@px
+
@x

@E

@E

@px

or
@x

@px
=
@xc

@px
� @x

@E

@E

@px
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Shephard�s Lemma implies
@E

@px
= xc

so that

@x

@px
=

@xc

@px
� xc @x

@E

=
@x

@px

����
U=constant

� xc @x
@E

=
@x

@px

����
U=constant

� xc@x
@I

Note that at optimum we have

xc(px; py; U) = xc(px; py; V (px; py; I))

= x(px; py; I)

Then the slutsky euqation becomes

@x

@px
=
@x

@px

����
U=constant

� x@x
@I

7. Elasticity Relationship

(a) Homogeneous of degree zero in prices and income: By Euler�s theorem im-

plies for

p1
@xi
@p1

+ p2
@xi
@p2

+ � � �+ pn
@xi
@pn

+ I
@xi
@I

= 0 for all i 2 N

or divide xi on both sides

p1
xi

@xi
@p1

+
p2
xi

@xi
@p2

+ � � �+ pn
xi

@xi
@pn

+
I

xi

@xi
@I

= 0 for all i 2 N

ei;p1 + � � �+ ei;pn + ei;I = 0
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(b) Engel aggregation: Total di¤erentiate I with respect to budget constraint

1 = p1
@x1
@I

+ � � �+ pn
@xn
@I

1 =
p1x1
I

I

x1

@x1
@I

+ � � �+ pnxn
I

I

xn

@xn
@I

so that

1 = s1e1;I + � � �+ snen;I

(c) Cournot aggregation:Total di¤erentiate pi with respect to budget con-
straint

0 = p1
@x1
@pi

+ � � �+ xi + pi
@xi
@pi

+ � � �+ pn
@xn
@pi

Then multiply both sides by pi=I

0 = p1
@x1
@pi

pi
I
+ � � �+ xi

pxi
I
+ pi

@xi
@pi

pxi
I
+ � � �+ pn

@xn
@pi

pi
I

0 =
p1x1
I

@x1
@pi

pi
x1
+ � � �+ xi

pi
I
+
pixi
I

@xi
@pi

pi
xi
+ � � � pnxn

I

@xn
@pi

pi
xn

so that

0 = s1 + s1e1;pi + � � � � � �+ snen;pi

(d) Compensated and Uncompensated Price Elasticities

Recall Slutsky�s equation
@x

@px
=
@xc

@px
� x@x

@I

Multiple both sides by px=x

ex;px =
px
x

@x

@px

=
px
x

@xc

@px
� px
x
x
@x

@I

=
px
xc
@xc

@px
� pxx

I

I

x

@x

@I
= ecx;px � sxex;I

So they are similar if (i) sx is small or (ii) ex;I is small
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8. Hick�s second law

Since compensated demand is homogeneous in degree zero in all prices, by Euler�s

Theorem, we have

p1
@xci
@p1

+ p2
@xci
@p2

+ � � �+ pn
@xci
@pn

= 0

so that divding by xci , we have

eci;p1 + e
c
i;p2
+ � � �+ eci;pn = 0

Since we know that eci;pi � 0, we haveX
j 6=i
eci;pj � 0

Hence, most goods are net substitutes.

9. Walra�s Law.

Under monotonic preference, optimal consumption bundle is on the budget curve.

p1x1 + � � �+ pnxn = I

10. Downward sloping compensated demand

Suppose x is chosen under prices p and income I. Consider some prices p̂. Let

Î = p̂1x1 + p̂2x2 + � � �+ p̂nxn. Then either

xi(p̂1; : : : ; p̂n; Î) = xi(p1; : : : ; pn; I) for all i

or
X

i
(p̂i � pi)

�
xi(p̂1; : : : ; p̂n; Î)� xi(p1; : : : ; pn; I)

�
< 0

Proof. Assume xi(p̂1; : : : ; p̂n; Î) 6= xi(p1; : : : ; pn; I) for some i.X
i
(p̂i � pi)

�
xi(p̂1; : : : ; p̂n; Î)� xi(p1; : : : ; pn; I)

�
=

X
i

h
p̂ixi(p̂1; : : : ; p̂n; Î)� p̂ixi(p1; : : : ; pn; I)� pixi(p̂1; : : : ; p̂n; Î) + pixi(p1; : : : ; pn; I)

i
=

X
i

h
Î � Î � pixi(p̂1; : : : ; p̂n; Î) + I

i
(by Walra�s law)

=
X

i

h
I � pixi(p̂1; : : : ; p̂n; Î)

i
� 0 (by weak axiom of revealed preference)
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