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1 Introduction

In this topic, we review non-cooperative game theory.

1.1 Reading:

1. Jean Tirole, Chapter 11, The Theory of Industrial Organization, 1988.

2. Bagwell, Kyle and Asher Wolinsky, �Game Theory and Industrial Organization�,

2002. �Handbook of Game Theory with Economic Applications,�volume 3, 2002.

3. Gibbons, R. A primer in game theory, Harvester-Wheatsheaf, 1992.

4. Gibbons, R. �An introduction to Applicable Game Theory,�Journal of Economic

Perspectives, 1997, 127-129.

1.2 Game Theory Problem and Decision Problem

Non-cooperative Game Theory:

1. interaction among economic agents �interactive situation

2. Situation is complicated so expected utility theorem is used to simplify the treat-

ment

Example. Monopoly problem
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1. Inverse demand curve: P = P (Q)

2. Cost curve: C = C (Q)

3. Firm�s objective: maximize pro�t � = P (Q)�Q� C (Q)

4. The decision of consumer is degenerated so it is a decision problem

Example. Duopoly problem

1. Two �rms: �rm 1 and �rm 2

2. Firm 1: chooses production quantity Q1 subject to cost function c (Q1), maxi-

mizes pro�t

�1 = P (Q1 +Q2)�Q1 � C (Q1)

3. Firm 2: chooses production quantity Q2 subject to cost function c (Q2), maxi-

mizes pro�t

�2 = P (Q1 +Q2)�Q2 � C (Q2)

4. As each �rms decision would a¤ect another �rm, it is a game

5. Note that when we have many �rms so that Q = Q1 + � � �+Qn in the way that
each �rm is small compared to the whole market, then �rm would just take price

as given and then we have decision problem back

2 Static Game of Complete Information

2.1 Strategic-form game

A strategic-form game G =
�
N; (Si; ui)i2N

�
is represented by three elements:

1. N = f1; : : : ; ng is the set of players

2. si 2 Si is the strategy set for player i 2 N

3. ui is the payo¤ function of player i which maps strategies pro�le (s1; : : : ; sn) to

a utility number

ui :
Q
j2N

Sj ! R

2



Taking the duopoly example, we have N = f1; 2g, Qi 2 Si = R+ and ui (Q1; Q2) =
P (Q1 +Q2)Qi � C (Qi).

2.2 Strict Dominance

De�nition. For player i 2 N, si 2 Si, is strictly dominated by s0i 2 Si i¤

ui (si; s�1) < ui (s
0
i; s�i) ; 8s�i 2 S�i

Example. Prisoner dilemma

2

C D

1 C -1,-1 -9,0

D 0,-9 -6,-6

1. C is strictly dominated

2. Once C is removed from the strategy choice, the expected outcome is fD;Dg

2.3 Iterated elimination of strictly dominated strategy (i.e.s.d.s.)

1. Since strict dominance implies higher payo¤under every circumstance, rationality

implies a strictly dominated strategy is not used.

2. Iterated strict dominance: eliminate strictly dominated strategies to get a smaller

game, then repeat this procedure.

3. Requires strong rationality and common knowledge assumption.

4. Note that this is di¤erent from elimination of weakly dominated strategies. (Ex-

perimental results on �Guess 2/3 of the average�) [weak dominance never a lower

payo¤ no matter what the opponent does, and sometimes a higher payo¤]

Example Solvable by i.e.s.d.s.

2

L M R

1 U 1,0 1,2 0,1

D 0,3 0,1 2,0
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1. R is strictly dominated by M

2. Once R is eliminated, D is strictly dominated by U

3. Once D is eliminated, L is strictly dominated by M

4. Hence, fU;Mg should be the equilibrium outcome.

Example V: Not solvable by i.e.s.d.s.

2

L M R

T 0,4 4,0 5,3

1 M 4,0 0,4 5,3

D 3,5 3,5 6,6

1. There is no strictly dominated strategy

2. So not solvable by i.e.s.d.s.

2.4 Nash Equilibrium

De�nition. For a normal form game G =
�
N; (Si; ui)i2N

�
, a strategy pro�le s� 2Q

j2N Sj is a Nash equilibrium if and only if

ui
�
s�i ; s

�
�i
�
� ui

�
si; s

�
�i
�
; 8si 2 Si;8i 2 N

A strategy pro�le is a Nash equilibrium if for every player, there is no incentive to uni-

laterally deviate from the proposed strategy given other players keeping the proposed

strategy.

De�nition. A strategy si is a best response with respect to all other players�
strategies s�i if

ui (si; s�i) � ui (s0i; s�i) ; 8s�i 2 S�i

De�nition. The set of best responses for player i given s�i is the best response
Correspondence

�i (s�i) = fsi 2 Si j ui (si; s�i) � ui (s0i; s�i) ; 8s�i 2 S�ig

Claim. Nash equilibrium is a �xed point:
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Rewrite the de�nition of Nash equilibrium, for all i 2 N , we have

s�i 2 �i(s��i)

Hence, we have

s� = (s�1; s
�
2; : : : ; s

�
n) 2

�
�1(s

�
�1); �2(s

�
�2); : : : ; �n(s

�
�n)
�

or compactly,

s� 2 �(s�)

where �i : S�i � Si.

Example. Battle of Sexes

girl

opera football

boy opera 5,3 2,2

football 2,2 3,5

1. Note that the payo¤ is given by the rule that unfavorable event have 0 payo¤,

together have 2 payo¤ and favorite one has 3 payo¤

2. Two NEs = ffopera, operag , ffootball, footballgg

Example Chicken Game

2

straight swerve

1 straight -1,-1 10,0

swerve 0,10 -3,-3

1. Two NEs = ffserve, straightg , fstraight, swervegg

2. Multiple NEs

3. Might not be best for either player; So NE can be ine¢ cient

Hence, there is no speical property related to Nash equilibirum.
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2.4.1 Iterated elimination and Nash equilibrium:

Proposition. Suppose G is a �nite game, If s� 2
Q
j2N Sj is the unique survivor of

i.e.s.d.s., then s� is a Nash equilibrium. (Proof in appendix)

Proposition. If s� is a Nash equilibrium, then s� survives i.e.s.d.s. (Proof in appendix)

2.5 Application: Cournot Game

Cournot Problem in linear and symmetric demand with two �rms:

1. Inverse demand P (q1; q2) = a� q1 � q2 where a > 0

2. Maringal cost of �rm is zero.

3. Pro�t of �rm i = 1; 2: �i (qi; qj) = [a� (qi + qj)] qi

To write it in normal form:

Player set N = f1; 2g
Strategy: q1 � 0; q2 � 0.
Payo¤ functions u1 = �1(q1; q2), u2 = �2(q1; q2)

To �nd NE, we have to �nd best response correspondence of �rm 1. (�rm 2 is similar)

Given q2, recall the objective for �rm 1 is

max
q1
�1 (q1; q2) = [a� (q1 + q2)] q1

The FOC is
@�1
@q1

= 0) a� 2q�1 � q2 = 0

Hence, the best response is

�1 (q2) = q
�
1 =

a� q2
2

By symmetry, we have

�2 (q1) = q
�
2 =

a� q1
2

Remember Nash equilibirum requires

q�1 = �1 (q
�
2) ; q

�
2 = �2 (q

�
1)
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Hence, we can just solve the above system can get

q�1 = q
�
2 = a=3

Exercise.
Consider a two-�rm industry selling homogeneous goods. Two �rms are competing

with quantities so that �rm 1 chooses q1 � 0 and �rm 2 chooses q2 � 0. The inverse
demand is P (Q) = a � Q where a > 0 and Q = q1 + q2 is total production of two

�rms. Suppose cost for �rm i = 1; 2: ci (qi) = cqi where a > c > 0. Pro�t of �rm 1 is

�1 = (P (Q)� c1) q1 and pro�t of �rm 2 is �2 = (P (Q)� c2) q2.
(a) Write down the normal-form for this game.

(b) What is the Nash equilibrium if c = 0? What is the Nash equilibrium?

(c) Draw best response correspondence to visualize Nash equilibrium.

(d) Apply iterated elimination of strictly dominated strategy to �nd Nash equilibirum.

(e) Consider asymmetric costs: ci (qi) = ciqi. What is Nash equilibirum if (i) 0 < ci <

a=2? What if (ii) c1 < c2 < a but 2c2 > a+ c1?

Suggested Solution.
(a) The game G = (N;S; u) is:

N = f1; 2g
S = S1 � S2 where S1 = S2 = [0; a]
U = (u1; u2) where u1 = �1 and u2 = �2.

(b) For �rm 1,

max
q1
[a� (q1 + q2)] q1

so that FOC is

q�1 =
a� q2
2

We have to take corners into account. Obviously, producing at a is not optimal so we

have

BR1(q2) = max

�
0;
a� q2
2

�
Similarly,

BR2(q1) = max

�
0;
a� q1
2

�
Solving the system, we have

q�1 = q
�
2 =

a

3
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Replacing a by a� c, then we have

q�1 = q
�
2 =

a� c
3

c) Omitted.

d) For �rm 1, any quantities q1 > (a� c) =2 is strictly dominated. This is similar for
�rm 2. Hence, knowing this �rm 1 will not choose any quantity q1 < (a� c) =4 since
they are best response to q2 > (a� c) =2. Similar case for �rm 2 again. Then �rm 1

will not choose any quantity q1 > (3a� c) =8. Hence, this converge to

q�1 = q
�
2 =

a� c
3

e) The best responses are

BR1(q2) = max

�
0;
a� c1 � q2

2

�
BR2(q1) = max

�
0;
a� c2 � q1

2

�
If we solve the equations, we can �nd the feasible candidates are

q�1 =
a� 2c1 + c2

3
; q�2 =

a� 2c2 + c2
3

q�1 =
a� c1
2

; q�2 = 0

q�1 = 0; q�2 =
a� c2
2

q�1 = 0; q�2 = 0

Obviously, q�1 = 0; q
�
2 = 0 is not a NE. It is easy to check if 0 < ci < a=2, then the �rst

one is the NE. And under (ii), second one is the NE.

Exercise.
Consider a two-�rm industry selling homogeneous goods. All �rms are competing with

quantities so that �rm i (i = 1; 2) chooses qi � 0. Inverse demand P (Q) = a�Q where
a > 0 and Q = q1 + q2 + � � � + qn. Cost function for �rm i = 1; 2; : : : ; n is ci (qi) = cqi
where a > c > 0. Pro�t of �rm i = 1; 2; : : : ; n is �i (qi; qj) = [a� c� (qi + qj)] qi.
(a) Write down the normal-form for this game.

(b) Find the Nash equilibirum.
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(c) What happen when n approach in�nity?

Suggested Solution.
(a) N = f1; 2; : : : ; ng
S = S1 � S2 � � � � � Sn where Si = [0; a]
U = (u1; u2; : : : ; un) where ui = �i.

(b) Similar to question 1, we have

BR1(q�1) = max

�
0;
a� c�

P
j 6=1 qj

2

�
so that symmetric property implies

q�i =
a� c
n+ 1

(c) When n goes to in�nity, each �rm produces near zero quantity. Competitive equi-

librium.

2.6 Existence of Pure NE

Please refer to the appendix for existence details. Here, we provide the main result:

Theorem. Debreu (1950): 8i 2 N , Si is nonempty compact, convex and ui is contin-
uous and quasi-concave. Then, there exists Nash equilibrium in pure strategies.

2.7 Mixed Strategies

Example. Matching pennis Game

2

H T

1 H -1,1 1,-1

T 1,-1 -1,1

1. Rules: player 1 wins if pennies are di¤erent and player 2 wins if pennis are same

2. No pure strategy NE, this support the idea of randomization

De�nition. A strategic game with Mixed Strategy G =
�
N; (Si; Ui)i2N

�
:
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1. For each i 2 N , a mixed strategy mi : Si ! [0; 1] such that

P
si2Si

mi (si) = 1

2. The set of mixed strategy is mi 2Mi where Mi = �(Si)

3. The payo¤ function is vNM utility function: Ui :
Q
j2NMj ! R where

Ui (m) =
P
s2S

" Q
j2N

mj (sj)

#
ui (s)

where m = (mi;m�i), s = (si; s�i) 2 S and S =
Q
j2N Sj.

De�nition. A Nash equilibrium with mixed strategy is a strategy pro�le m� 2Q
j2NMj such that

Ui
�
m�
i ;m

�
�i
�
� Ui

�
mi;m

�
�i
�
; 8mi 2Mi

Example Matching pennis game revisited

2

H T

1 H -1,1 1,-1

T 1,-1 -1,1

1. si = fS; Tg so thatmi : fH;Tg ! [0; 1] with the condition thatmi (H)+mi (T ) =

1.

2. Strategy pro�le m = (m1;m2)

3. Expected utility for player 1 is

U1 (m1;m2) = m1 (H)m2 (H)u1 (H;H) +m1 (T )m2 (H)u1 (T;H)

+m1 (H)m2 (T )u1 (H;T ) +m1 (T )m2 (T )u1 (T; T )

4. Same for U2 (m1;m2)
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5. NE is (m�
1;m

�
2) such that

U1 (m
�
1;m

�
2) � U1 (m1;m

�
2) ; 8m1 2M1

U2 (m
�
1;m

�
2) � U2 (m�

1;m2) ; 8m2 2M2

Example. Battle of Sexes revisited

girl

opera football

boy opera 5,3 2,2

football 2,2 3,5

1. Denote m1 (opera) = r then m1 (football) = 1� r

2. Denote m2 (opera) = q then m1 (football) = 1� q

3. Now player 1�s expected utility would be

U1 = 2rq + (1� r) (1� q)
= 3rq + 1� r � q

4. FOC implies that
@U1
@r

= 3q � 1 T 0, q T 1

3

so that

�1 (q) =

8><>:
0

[0; 1]

1

q < 1
3

q = 1
3

q > 1
3

5. Similarly, for player 2�s expected utility is

U2 = rq + 2 (1� r) (1� q)
= 2� 2r � 2q + 3rq

6. FOC implies that
@U1
@q

= 3r � 2 T 0, r T 2

3
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so that

�2 (r) =

8><>:
0

[0; 1]

1

r < 2
3

r = 2
3

r > 2
3

7. By drawing graphs, or by observation,

NE =

�
(Football, Football) ; (Opera, Opera) ;

�
r =

2

3
; q =

1

3

��

8. Note in the mixed strategy NE, the payo¤ is same for player no matter what is

strategy so the main motive to randomize is to let the opponent to randomize.

2.7.1 Existence of mixed strategy NE

Every �nite game has at least one Nash equilibrium (Nash 1950). See the proof in

Appendix.

3 Dynamic Game of Complete Information

3.1 Contingent plan

In dynamic games, strategy is no longer action only but a contingent plan depends on

the path of play, i.e. history of players�actions.

Example. Two symmetric �rms compete in quantity and facing linear demand:

P (Q) = a�Q and ci (qi) = cq where a > 0 and c > 0. If �rm 1 is the �rst mover, this
becomes a Stackerberg problem.

To solve the problem, we employ the backward induction technique,

q�2 = �2 (q1) = argmax
q2
�2 = argmax

q2
(a� q1 � q2 � c) q2

=
a� c� q1

2

and then �rm 1 maximizes pro�t based on the best response of �rm 2,

q�1 = �1 (q2) = argmax
q1
(a� q1 � �2 (q1)� c) q1

=
a� c
2
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so that

q�2 =
a� c
4
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3.2 Extensive Form Game

Extensive Form Game: G = fN; T; I; n; A; u; Pg
Set of Players: N = f1; 2; : : : ; Ng
Set of Nodes: T where Z � T is terminal nodes and all t 2 TnZ are decision nodes
(non-terminal node).

Player moves at node t: i (t) where i : T ! N

Set of Action at node t: A(t)

Successor node: n(t; a) where n : (TnZ)� A! T

Payo¤ functions: ui : Z ! R
Information Set P (t): set of nodes player i(t) knows it is possible; it is a partition:

t0 2 P (t) implies i(t0) = i(t); A(t0) = A(t), P (t0) = P (t)

De�nition. A subgame is a part of the game that starts with a decision node and

contains all the sucessor nodes without cutting any information sets.

De�nition. A subgame perfect equilibrium is a Nash equilibrium for every subgame

game.

Motivating Example. Empty threat of �rm entry

1. Two players: incumbent and potential entrant.

2. Zero payo¤ for both if no entry. If there is an entry, incumbent can choose to

�ght or accommodate. Both have loss of 5 if there is �ght. If the incumbent

accommodates, the incumbent loses 1 and the entrant earns 1. Draw a diagram

here.

3. Though no entry and �ghting is a NE, but it is not a credible threat as entrant

will actually accommodate if there is a entry.

4. Selten (1965) suggests the idea of subgame perfect Nash equilibrium which is

essentially the idea of combination of backward induction and Nash equilibrium.

5. Subgam-perfect means we require Nah equilibirum in every subgame.

3.3 Repeated game

Stage game: G =
�
N; (Ai; ui)i2N

�
where Ai is action set and ui : A ! R where

A =
Q
j2N Aj
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Number of stage: T + 1 times: 0; 1; 2; : : : ; T

Path a = fa (t)gTt=0
Payo¤: Ui (a) =

PT
t=0 ui (a (t))

t-history: h (t) = (a (0) ; a (1) ; : : : ; a (t� 1)) 2 H (t) = At

strategy �i at period t: �i (t) : H (t)! Ai or At ! Ai

strategy of the game �i: �i = (�i (t))
T
t=0 :

ST
t=0A

t ! Ai

strategy pro�le: � = (�i)i2N
Path generated from �: a (�)

Path generated from � after h (t): a (�; h (t))

Nash equilibrium:

8i 2 N;Ui (a (�)) � Ui (a (��i; �0i)) 8�0i

Subgame perfect Nash equilibrium:

8i 2 N; 8t;8h (t) 2 At; Ui (a (�; h (t))) � Ui (a (��i; �0i; h (t))) 8�0i

3.3.1 Finitely Repeated Game

Theorem. Suppose that the game G is repeated T +1 times. If G has a unique Nash
equilibrium a�, then the repeated game has a unique SPNE of which the equilibrium

path is

a (�) = (a�; : : : ; a�)

When it comes to non-uniqueness of stage NE then non-NE outcome might be sup-

portable in the early stages.

Example:

2

B C D

B 3,3 0,0 0,0

1 C 0,0 4,4 0,5

D 0,0 5,0 1,1

where a = ((C;C) ; (D;D)) can be supported as SPNE
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3.3.2 In�nitely repeated game

To make payo¤ comparable, we allow player discount future payo¤ to make it �nite.

Ui (a) =
1P
t=0

�tui (a (t))

2

C D

1 C 4,4 0,5

D 5,0 1,1

To support a = f(C;C) ; (C;C) ; : : :g, the threat to be is to play fD;Dg forever. The
requirement would be

4

1� � � 5 + �
1

1� �
� � 1

4

Friedman�s folk theorem (1971): When � ! 1, any outcome giving payo¤ greater

than the worst NE payo¤ can be supported.
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4 Static Game of Incomplete Information

4.1 Bayesian game

Game is described by
�
N; (Ai; Ti; Pi; ui)i2N

�
where N is player set, Ai is action set, Ti

is set of types, Pi (t�i j ti) is belief of type i of player i, strategy is si : Ti ! Ai and

ui (a1; : : : ; an; t1; : : : ; tn) is payo¤ function.

This is an extensive form game where there is a player called nature moves �rst and

this player is not strategic.

To simplify the case, we adopt the common belief assumption

pi = p (t) = p (t1; t2; : : : ; tn) for all i 2 N

Now, we have

pi (t�i j ti) =
p (t�i; ti)P
t0i2Ti

p
�
t0�i; ti

�
Note the common belief does not implies whether belief is independent or dependent

on types. Example:

2

W2 S2

1 W1 1/15 4/15

S1 2/15 8/15

and
P1 (W2 j W1) =

1=15
5=15

= 1
5

P1 (W2 j S1) = 2=15
10=15

= 1
5

and
2

W2 S2

1 W1 1/15 4/15

S1 8/15 2/15

and
P1 (W2 j W1) =

1=15
5=15

= 1
5

P1 (W2 j S1) = 8=15
10=15

= 4
5

4.2 Bayesian Nash equilibrium

De�nition. Bayesian NE is s� = (s�1; : : : ; s
�
n) such that 8i;8ti

s�i (ti) = arg max
ai2Ai

P
t�i2T�i

ui (s
� (t1) ; : : : ; ai; : : : s

�
n (tn) ; t) pi (t�i j ti)

where s�i : Ti ! Ai in fact is best response to s��i.

To rewrite it in a compact manner, we have s�i 2 �i
�
s��i
�
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4.2.1 Application: Cournot Game with incomplete information

�rm 1�s marginal cost: c

�rm 2�s marginal cost: cH > cL
�rm 1�s belief: p (c2 = cH) = � and p (c2 = cL) = 1� �
�rm 1�s belief is common knowledge

Now q2 : fcH ; cLg ! A, we have �rm 2�s maximization:

If cH , then we have �2 = [(a� q�1 � q2)� cH ] q2 so that

q�2 (cH) =
a� q�1 � cH

2

If cL, then we have �2 = [(a� q�1 � q2)� cL] q2 so that

q�2 (cL) =
a� q�1 � cL

2

Firm 1�s maximization would be

q�1 = argmax
q1
� [a� q1 � q�2 (cH)� c] q1 + (1� �) [a� q1 � q�2 (cL)� c] q1

=
a� c� [�q�2 (cH) + (1� �) q�2 (cL)]

2

=
a� 2c+ �cH + (1� �) cL

3

so that

q�2 (cH) =
a� 2cH + c

3
+
(1� �) (cH � cL)

6

q�2 (cL) =
a� 2cL + c

3
� � (cH � cL)

6
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5 Dynamic Game of Incomplete Information

5.1 Perfect Bayesian Equilibrium

A PBE is a pair of strategy pro�le and system of belief for every information set.

Two requirements:

1. sequential rationality: given the belief at each information set, expected utility

is maximized.

2. Bayesian updating: on equilibrium path, belief are revised accoding to Bayes

theorem

5.1.1 Signalling Game

Two players: sender S and receiver R

Stage 1: The sender S moves �rst by sending a message.

Stage 2: The receiver R gets the message and then choose an action

The game G = ffS;Rg ; T; P;M;A; us; urg where

1. M : S�s action

2. A: R�s action

3. T : S�s type set

4. P : R�s prior belief

5. us: us (mj; ak; ti): S�s payo¤ function

6. ur: ur (mj; ak; ti): R�s payo¤ function

5.1.2 Perfect Bayesian Equilibrium

Requirement 1: � is a system of belief

� (ti j mj) s.t.
P

ti2T � (ti j mj) = 1

Requirement 2: sequential rationalities

S�s sequential rationality:
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For each type i,

m� (ti) 2 arg max
mj2M

us (mj; a (mj) ; ti)

R�s sequential rationality:

a� (mj) 2 argmax
ak2A

P
t2T ur (mj; ak; ti)� (ti j m)

Requirement 3: Bayesian updating

For each mj 2M , if m� (ti) = mj for some ti,

� (ti j mj) =
p (ti)P
t0i2Tj

p (t0i)

where Tj = ft0i 2 T;m� (t0i) = mjg

A Appendix. Advanced Material

A.1 Static Game of Complete Information

A.1.1 Iterated elimination and Nash equilibrium:

Proposition. Suppose G is a �nite game, If s� 2
Q
j2N Sj is the unique survivor of

i.e.s.d.s., then s� is a Nash equilibrium.

Proof: See Appendix.

1. Suppose not. s� is the unique survivor of i.e.s.d.s. but s� is not Nash equilibrium

2. This implies that 9i 2 N , 9si 2 Si such that

ui
�
s�i ; s

�
�i
�
< ui

�
si; s

�
�i
�

3. However, given s� being the unique survivor, si is eliminated at some stage so

that 9s0i 2 Si such that

ui (si; s�i) < ui (s
0
i; s�i) ; 8s�i 2 ~S�i
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4. Yet, s��i is not eliminated in every stage so that

ui
�
si; s

�
�i
�
< ui

�
s0i; s

�
�i
�

5. However, s0i is also eliminated at some stage so that there exists s
00
i such that

ui
�
s0i; s

�
�i
�
< ui

�
s00i ; s

�
�i
�

6. Hence, by transitivity, we have

ui
�
s�i ; s

�
�i
�
< ui

�
si; s

�
�i
�
< ui

�
s0i; s

�
�i
�
< ui

�
s00i ; s

�
�i
�
< � � �

7. And given �nite iteration and the fact that s� is the last survivor, we have

ui
�
si; s

�
�i
�
< ui

�
s0i; s

�
�i
�
< ui

�
s00i ; s

�
�i
�
< � � � < ui

�
s�i ; s

�
�i
�

8. Hence, contradiction.

Proposition. If s� is a Nash equilibrium, then s� survives i.e.s.d.s.
Proof:

1. Suppose not. s� is a Nash equilibrium but s� does not survive i.e.s.d.s.

2. This implies at some stage, for some i 2 N , s�i is eliminated due to strictly

dominated: that is, 9i 2 N , 9s0i 2 ~Si such that

ui (s
0
i; s�i) > ui (s

�
i ; s�i) ; 8s�i 2 ~S�i

3. Choose the �rst i that satis�es the above (�rst i because the elimination is done

in the order i), we would have s��i 2 ~Si

ui
�
s0i; s

�
�i
�
> ui

�
s�i ; s

�
�i
�

and hence a contradiction to the de�nition of Nash equilibrium.

21



A.1.2 Existence of Nash Equilibrium

Mathematics

1. sequence S � R: fskg1k=0, sk 2 S, fs1; s2; sk; : : :g

2. convergent sequence: 8" > 0, 9k (") 2 N s.t. 8k; k0 � k ("), ksk � s0kk < "

3. closed set S: any converging sequence has limit in S

open set: complement of closed set

4. Continuous function f : S ! T � R is continuous if for all convergent sequence
fskg1k=0 ! s, then ff (sk)g1k=0 ! f (s).

5. Quasi-concave function f : S ! R, 8s; s0 2 R, 8� 2 [0; 1], f (�s+ (1� �) s0) �
min ff (s) ; f (s0)g

6. Nonemptiness of S: S 6= f?g

7. Boundedness of S: 8si 2 S, 9r 2 R++ such that ksik � r

8. Compactness of S: closed and bounded (doesn�t have to be connected)

Any sequence in compact set has a converging subsequence

9. Convex set X: any linear combination of element in the each is inside the set

10. Correspondence � : S ! `T , 8s 2 S, � (s) � T

� is nonempty-valued if � (s) 6= ? 8s 2 S

� is convex-valued if � (s) is convex 8s 2 S

11. Upper-hemi continuous (UHC):

8 fskg1k=0 ! S, 8 fbkg1k=0 such that bk 2 � (sk), 8convergent subsequence fb0kg
1
k=0

of fbkg1k=0, then b 2 � (s).

NE is a �xed point:

1. Game G =
�
N; (Si; ui)i2N

�
2. Best response correspondence: �i (s�i) = fsi 2 Si j u (si; s�i) � u (s0i; s�i) ;8s0i 2 Sig

3. Nash equilibrium s� is a �xed point: s� 2 S such that s� 2 � (s�) where � =Qn
i=1 �i and �i : S�i ! Si
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Kakutani �xed point theorem:

1. S � RN and � : S ! S

2. S is nonempty, compact and convex

3. � is UHC, non-empty valued and convex

4. Then 9s� 2 S such that s� 2 � (s�)

Debreu (1958): Existence of pure NE Statement: 8i 2 N , si is nonempty

compact, convex and ui is continuous and quasi-concave. Then, there exists Nash

equilibrium in pure strategies

Proof:

1. The condition for S is assumed.

2. Impose condition on ui such that �i satis�es the condition �i : S�i ! Si

3. Non-emptiness of �i is ensured by Weierstress�s theorem (every continuous func-

tion in a �nite-dimensional non-empty compact Euclidean space has a solution

to a maximization problem) : ui (si; s�i) is continuous in si and Si is compact

then there exists a maximum and hence �i is non-empty.

4. Convexed-valuedness of �i: by quasi-concavity in ui (by de�nition, a function is

quasiconcave on a convex set if every upper level set of this function is convex)

5. UHC of �i is ensured by Berge�s maximum theorem: ui (si; s�i) is continuous in

Si � S�i, then �i is UHC

6. Hence, � is UHC, non-empty valued and convex. Apply Kakutani �xed point

theorem.

Existence of NE in Cournot Model. Theorem: There exists a Cournot equilib-

rium if

1. inverse demand function P (Q) satis�es 9 �Q s.t. 8Q � �Q, P (Q) = 0,

2. P (Q) is continuous and decreasing. (Rmk: this implies limx!0 P (x) <1),

3. ci(qi) is continuous and increasing in qi
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4. ci(qi) is convex in qi

5. P (Q) is concave.

Proof:

1. By construction, S is non-empty and convex.

2. It is closed and bounded by assumption 1.

3. From assumption 3, �i (qi; q�i) = P
�
qi +

P
j 6=i qj

�
qi � ci (qi) is continuous in qi

so that by Weirestess theorem, the any continuous function has maximum in a

compact set, hence ' is non-empty.

4. Note that from assumption 3, �i is also continuous in qj, by Berge�s maximum

theorem, ' is upper hemi-continuous.

5. Since in single variable function, quasi-concavity is equivalent to single peaked-

ness, then from assumption 4 and 5, we know ' is convex valued by quasi-

concavity of �i.

Theorem: With the above 5 assumptions, there exists a Cournot equilibrium:

Proof:

1. By construction, S is non-empty and convex.

2. It is closed and bounded by assumption 1.

3. From assumption 3, �i (qi; q�i) = P
�
qi +

P
j 6=i qj

�
qi � ci (qi) is continuous in qi

so that by Weirestess theorem, the any continuous function has maximum in a

compact set, hence ' is non-empty.

4. Note that from assumption 3, �i is also continuous in qj, by Berge�s maximum

theorem, ' is upper hemi-continuous.

5. Since in single variable function, quasi-concavity is equivalent to single peaked-

ness, then from assumption 4 and 5, we know ' is convex valued by quasi-

concavity of �i.
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Nash (1950): Existence of mixed strategy NE Every �nite game has at least

one Nash equilibrium.

De�niition. Finite game: �nite number of players and �nite number of pure strategies.

1. Finite Game: G =
�
N; (Si; ui)i2N

�
where ui is vNM utility

2. Mixed strategy: mi : Si ! [0; 1] with
P

si2Sim (si) = 1 such that Mi is convex

and compact

3. The utility:

Ui (mi;m�i) =
P
s2S

" Q
j2N

mj (sj)

#
ui (s)

=
X
s2S

mi (si)
P

s�i2S�i

"Q
j 6=i
mj (sj)

#
ui (si; s�i)

=
X
s2S

mi (si) ~Ui (si;m�i)

hence utility Ui is continuous and convex (due to Ui(mi;m�i) is linear). Apply

Kakutani �xed point theorem.

A.1.3 Application: Model of Sales (Varian 1980)

Setup:

1. N �rms

2. a continnum of consumers

3. type of consumer: informed I and uninformed U . (uninformed are locked into

particular �rms; informed will �nd the lowest price)

4. population is 1: I + U = 1

5. Willingness to pay v is common across all consumers

6. Marginal cost of production is zero (MC = 0)

7. Each �rm i announces price pi � 0 simultaneously as a pure strategy.
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8. Firm(s) with highest price will have (to split) the informed consumers. Unin-

formed consumers are evenly shared by all �rms. Denote k to be number of �rms

charging the lowerest price. Hence, pro�t function would be

�i (pi; p�i) =

(
pi
U
N

pi
�
U
N
+ I

k

� if pi > minj pj
if pi = min pj and jfj : pi = pjgj = k

Claim. There is no pure strategy Nash equilibrium in this game.

Proof.
Case 1: k > 1.

1. If v > min pj > 0, then one of k �rms charge pj � ", get the whole market I.

2. If v > min pj = 0, then one �rm can charge v and have pro�t.

3. If v = min pj, then �rm can charge v � ", grab the whole market.

Case 2: k = 1

Suppose i is the minimal.

We have pi = min pj and pj = v for j 6= i.
This implies �i (pi; p�i) = �j (v; p�j) so that �rm i wants to charge higher until v � ".
Hence, there cannot be any pure strategy equilibrium.

Exercise. Location choice. Consumers are uniformly located in a linear city of length
1. Each consumer only need to buy one good from a �rm. Consumer needs to incur

transportation cost of buying from a �rm that is proportional to the distance from

that �rm. Prices are �xed by government. Hence, consumers go to the nearest �rm. If

more than one �rms are in the same location, they share the consumer equally. There

are two �rms choosing their locations simultaneously

(i) Formally write down the normal-form game.

(ii) Show that there is unique pure-strategy Nash equilibirum that both �rms are

located in the middle of the city.

(iii) Show that when there are three �rms are choosing their locations, there is no-pure

strategy Nash equilibrium.1

1For characterization of mixed strategy, see A. Shaked(1982) �Existence and Computation of Mixed
Strategy Nash Equilibrium for 3-Firms Location Problem, �The Journal of Industrial Economics, Vol.
31, No. 1/2, Symposium on Spatial Competition and the Theory of Di¤erentiated Markets (Sep. -
Dec., 1982), pp. 93-96.
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Mixed strategy Nash equilibrium
Focus on symmetric mixed strategy equilibrium:

Denote F (p) be the cdf of strategy p. Let �p (F ) and p (F ) be two endpoints of support

of F :

�p (F ) = inf fp j F (p) = 1g ;
p (F ) = sup fp j F (p) = 0g

Theorem: There is unique symmetric equilibirum such that

(i) : �p (F ) = v

(ii) : p (F )

�
U

N
+ I

�
= v

U

N

(iii) : p

�
U

N
+ (1� F (p))n�1 I

�
= v

U

N
for all p 2

�
p (F ) ; �p (F )

�
(i) �p (F ) < v implies there is expected non-zero pro�t charging in between �p (F ) and

v.

(iii) With (i), there is no spike in F , we have (iii). (No �rm can charge v and happier)

And with no gaps, we have (ii). (Charging at the lowest price same as charging v)

Intuition: some �rms o¤er sales and some �rms o¤er no discount. They have to ran-

domize to avoid being detected informed consumer.

A.2 Dynamic Games of Complete Information

A.2.1 Application: Stackelberg-Cournot Model

Stage 1: Firm 1 makes commitment in capital investment K1

Stage 2: Firm 2, after observing this, decides to enter or not. If enter, pay entry cost

f and investement capital K2.

Both �rms have zero marginal cost.

The payo¤ for �rm 1 would be �1 (K1; K2) = K1(1�K1 �K2)

The payo¤ for �rm 2 would be

�2 (K1; K2) =

(
K2(1�K1 �K2)� f

0

if K2 > 0

if K2 = 0
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By backward induction, suppose there is entry. Then

�2 (K1) =
1�K1

2

�2 (K1; �2 (K1)) =

�
1�K1 �

1�K1

2

�
1�K1

2
� f =

�
1�K1

2

�2
� f

�1 (K1; �2 (K1)) =

�
1�K1 �

1�K1

2

�
K1

So that solving gives

��1 = 1=8 and �
�
2 = 1=16

In SPNE, to prevent entry

max
K2

[K2(1�K1 �K2)� f ] = 0

or �
1�K1

2

�2
= f ) K1 = 1� 2

p
f

Hence �rm 1�s payo¤ is

�1 (K1; �2 (K1)) =
�
1�

�
1� 2

p
f
���

1� 2
p
f
�

= 2
p
f
�
1� 2

p
f
�

So that entry is preferred if

2
p
f
�
1� 2

p
f
�
� 1=8

Hence, there is no entry if 0:00536 < f < 0:182:

However, if commiment cost is non-zero but small, then it might not be possible to

achieve this equilibirum as here commitment is free.

A.2.2 Application: Strategic trade model

Two countries, two �rms and two consumers.

Cournot: Brander and Spencer (1985)

Stage 1: government 1 and 2 simultaneous decides their tax (subsidy) by maximization

of social welfare
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Stage 2: �rm 1 and �rm 2 simultaneous decide their production and export by maxi-

mization of pro�t

1. Setup:

Inverse demand function: P = 1�Q

Marginal cost: c = 0

Pro�t function of �rm in country i: �i (qi; qj; si) = (1� qi � qj) qi + siqi

Government i: Gi(qi; qj; si) = �i (qi; qj; si)� siqi

2. Backward induction: FOC would be

@�i
@qi

= 1� 2qi � qj + si = 0

Best response of �rm i:

�i (qj; si) =
1� qj + si

2

and hence, we have

q�i =
1� sj + 2si

3
and q�j =

1� si + 2sj
3

3. First stage game becomes

Gi(qi; qj; si) =

�
1� 2 + sj + si

3

�
qi � siqi

=

�
1� sj � 4si

3

�
1� sj + 2si

3

where FOC becomes

@G

@si
=
�4 + 4sj + 2� 2sj � 16si

9
= 0

or

si =
1 + sj
16

so that si = sj = 1=15. Government would want to subsidize.

Betrand: Eaton and Grossman (1986)
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A.2.3 Collusion in Discret Cournot Game: Dilip Abreu (1988) Penal code

Consisder the follwoing:

2

L M H

L 10,10 3,15 0,7

1 M 15,3 7,7 -4,5

H 7,0 5,-4 -15,-15

which has (M;M) as NE.

Using a� = f(M;M) ; (M;M) ; : : :g, we could support a0 = f(L;L) ; (L;L) ; : : :g if

10

1� � � 15 + �
7

1� �
� � 5

8

However, this is not the lower bound.

Now suppose the penal code to be

a1 = f(M;H) ; (L;M) ; (L;M) : : :g
a2 = f(H;M) ; (M;L) ; (M;L) : : :g

Penal code means If a player deviates from the designated path, he would be punished

according to his punishment. On the punishment path, if any player deviates from the

designated path, he would be punished according to his punishment.

Exercise. Show that � � 4=7 is the lower bound.
To check whether such a path is SPNE, one has to resort to one-deviation principle to

check whether each player would have incentive to deviate once at each the equilibrium

path of play.

A.2.4 Application: Price War (Rotemberg and Saloner,1986 AER)

Assumption:

1. Two �rms are in Bertrand competition every period.

2. Each period demand D(t) for goods can be QL or QH .
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3. QH or QL is observable in the beginning of each period.

4. The probability being QL and QH are 1� w and w

5. Demand across time is independent: D(t) and D(t + h) are indepedent for any

h 6= 0.

6. Consumers willingness to pay is 1.

7. There are two �rms in the market. They compete in Bertrand competition:

�i (pi (t) ; pj (t) ;Q (t)) =

8><>:
Pi (t)Q (t)
Pi(t)Q(t)

2

0

if Pi (t) < Pj (t)

if Pi (t) = Pj (t)

if Pi (t) > Pj (t)

8. History at time t would be h (t) =
�
(Q (t0) ; Pi (t

0) ; Pj (t
0))tt0=0

	
9. Strategy at time t owuld be �i (t) : H (t)� fQH ; QLg ! R+

Consider equilibrium with trigger strategy:

Claim: There exists a symmetric trigger strategy equilibrium that maximize the total

payo¤ where

Pi (t) = Pj (t) = P (Q (t))

such that8>>><>>>:
P (QL) = P (QH) = 1

P (QL) = 1;P (QH) =
� (1� w)QL

QH (1� � (1 + w))
P (QL) = P (QH) = 0

if � > QH
(1+w)QH+(1�w)QL

if 1
2
� � � QH

(1+w)QH+(1�w)QL
if � < 1=2

Under trigger strategy, after deviation, continuation value is zero.

Under cutting is P (QH) is unpro�table i¤

P (QH)QH
2

+ �
wP (QH)QH + (1� w)P (QL)QL

2 (1� �) � P (QH)QH

P (QL)QL
2

+ �
wP (QH)QH + (1� w)P (QL)QL

2 (1� �) � P (QL)QL
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which implies

� � P (QH)QH
(1 + w)P (QH)QH + (1� w)P (QL)QL

� � P (QL)QL
(1 + w)P (QH)QH + (1� w)P (QL)QL

Exercise. Check the above inequalities to �nd the thresolds of �.
Note that in this model,

P (QH) � P (QL)

which implies lower price during boom!

A.3 Static Games of Incomplete Inforomation

A.3.1 Application: Contract Theory

Mechanism Design A social choice problem.

There are n agent in the society.

Each agent i has type �i.

Social optimal allocation (despite Arrow�s impossbility theorem) would be

y(�) = (y1 (�) ; : : : ; yn (�))

where � = (�1; : : : ; �n)

Hard to implement y(�) because each agent i has incentive to maniupulate �i to improve

allocation.

A mechanism is (y;M1; : : : ;Mn) such that each agent i submits message mi 2Mi and

y(m) is the allocation rule. The informaiton set of agent i is Ii which may be include

some subset of ��i.

An equilibrium is such that y�(I1; : : : ; In) = y(m�
1(I1); : : : ;m

�
n(In)).

Adverse Selection Problem Principle-agent model: n = 1.

The problem becomes (y;M) and I = � so the equilibirum is

m�(�) 2 argmax
m2M

u(y(m); �)

where the allocation is y�(�) = y(m�(�)).
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A direct mechanism: report directly the type (message space is the type space)M = �.

A truthful mechanism: report its own type

Revaluation Principle Theorem. If y�(�) is implmented through some mechanism,

then it can also be implemented through a direct truth�mechanism where the agent

reveals his information.

Proof.

1. Let (y;M) be the mechanism implement y� andm�(�) be the equilibirum mesage.

Hence y� = y(m�(�)).

2. Suppose a direct mechanism (y�;�) but it is not truthful. This implies there

exists �0 6= � such that
u(y�(�); �) < u(y�(�0); �):

3. However, this implies

u(y(m�(�)); �) < u(y(m�(�0)); �)

which contradicts our given condition. QED

General Revelation Principle In words: For any Bayesian game and any Bayesian

Nash equilibirum of the game, we can construct a new type-reporting Bayesian game

in which truth-telling is weakly dominant strategy for each player.

More formally, suppose we have a Bayesian game G =
�
N; (Ai; Ti; Pi; ui)i2N

�
. A BNE

s� = (s�1; s
�
2; : : : ; s

�
n) is de�ned as

8ti 2 Ti; s�i (ti) = arg max
ai2Ai

P
t=i2T�i u

�
s��i; ai; t

�
pi (t�i j ti)

A transformed game called type-reportting game is that

G0 =
�
N; (Ti; Ti; Pi; vi)i2N

�
where

vi = vi (� 1; : : : ; � ; t1; : : : ; tn)

= ui
�
s�i (� i) ; s

�
�i (��i) ; t

�
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Revelation Principle means that truth telling strategy �� is a BNE where ��i (ti) = ti
for all i and for all ti

A.3.2 Applicaton: Vertical Di¤erentiation/Price Discrimination

Discrete Version Monopolist problem: (Mussa and Rosen 1998 JET)

1. Di¤erent qualities can be provided by a monopolist

2. multiple types of consumers

3. each consumer buys at most 1 unit

4. monopolist cannot observe consumer�s type

5. monopolist o¤ers a price schedule ever di¤erent quality goods

Setup:

1. Two consumers types: T =
�
�H ; �L

	
where �H > �L > 0

2. Belief: p
�
�H
�
= � and p

�
�L
�
= 1� �

3. Quantity: q 2 [0;1)

4. marginal cost of producing type q: c (q) > 0, c0 (q) > 0, c00 (q) > 0 with c (0) = 0

5. Firm o¤ers price for every quantity: p(q)

6. Consumer with type �t has utility �tq � p (q)

A �rst-best solution: (First-order price discrimination)

1. Suppose �t is observable.

2. Firm just needs to provide two di¤erent price-quantity pairs (p(�t); �t) for t 2 T

3. Now the �rm�s problem becomes

max
pt

�
p
�
q
�
�t
��
� c

�
q
�
�t
���

such that

�tq(�t)� p
�
q
�
�t
��
� 0

34



4. The FOCs are

c0(q�
�
�t
�
) = �t

p
�
q�
�
�t
��

= �tq�
�
�t
�

A second-best solution:

1. When �t is not observable, then �H will not choose q�
�
�H
�
because

�Hq
�
�L
�
� p

�
q
�
�L
��

= �Hq
�
�L
�
� �Lq

�
�L
�

=
�
�H � �L

�
q
�
�L
�

> 0

= �Hq
�
�H
�
� p

�
q
�
�H
��

2. Firm decides (p
�
q
�
�L
��
; q
�
�L
�
; p
�
q
�
�H
��
; q
�
�H
�
) to maximize

max
p(q(�L));q(�L);p(q(�H));q(�H)

(1� �)
�
p
�
q
�
�L
��
� c

�
q
�
�L
���
+�

�
p
�
q
�
�H
��
� c

�
q
�
�H
���

Two conditions have to be satis�ed:

1. participation condition (PC)/Individual Rationality (IR)

(IR1) : �
Lq
�
�L
�
� p

�
q
�
�L
��
� 0

(IR2) : �
Hq
�
�H
�
� p

�
q
�
�H
��
� 0

2. incentive compatibility (IC)

(IC1) : �
Lq
�
�L
�
� p

�
q
�
�L
��
� �Lq

�
�H
�
� p

�
q
�
�H
��

(IC2) : �
Hq
�
�H
�
� p

�
q
�
�H
��
� �Hq

�
�L
�
� p

�
q
�
�L
��

Preliminary results:

1. IR1 is binding:
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From IC2, �
Hq
�
�H
�
�p

�
q
�
�H
��
� �Hq

�
�L
�
�p

�
q
�
�L
��
� �Lq

�
�L
�
�p

�
q
�
�L
��
.

Then if IR1 is not binding, then IR2 is not binding. Then �rm can increase

p
�
q
�
�L
��
and p

�
q
�
�H
��
. Contradiction.

2. IC2 is binding:

Suppoe not. Then �Hq
�
�H
�
� p

�
q
�
�H
��
> �Hq

�
�L
�
� p

�
q
�
�L
��
� �Lq

�
�L
�
�

p
�
q
�
�L
��
= 0. Then increases p

�
q
�
�H
��
will not violate IC1, IC2 and IR2.

Contradiction.

3. q
�
�H
�
� q

�
�L
�

Summing up IC1 and IC2, we have �
H(q

�
�H
�
� q

�
�L
�
) � �L(q

�
�H
�
� q

�
�L
�
).

Since �H > �L, we have q
�
�H
�
� q

�
�L
�
.

4. IC1 is redundant

Since IC2 is binding, we have p
�
q
�
�H
��
� p

�
q
�
�L
��
= �H(q

�
�H
�
� q

�
�L
�
) �

�L(q
�
�H
�
� q

�
�L
�
) because �H > �L and q

�
�H
�
� q

�
�L
�
.

5. IR2 is redundant

Since IC2 is binding, �
Hq
�
�H
�
� p(q

�
�H
�
) = �Hq

�
�L
�
� p(q

�
�L
�
) � �Lq

�
�L
�
�

p(q
�
�L
�
) = 0:

Hence, the maximization problem now becomes

max
q(�L);q(�H)

� = (1� �)
�
�Lq

�
�L
�
� c

�
q
�
�L
���
+�

�
�Hq

�
�H
�
�
�
�H � �L

�
q
�
�L
�
� c

�
q
�
�H
���

with FOC

@�

@q
�
�L
� = 0) �

�
�H � c0

�
q
�
�H
���

= 0

@�

@q
�
�H
� = 0) (1� �)

�
�L � c0

�
q
�
�L
���

� �
�
�H � �L

�
= 0

so that

�H = c0
�
q
�
�H
��

�L = c0
�
q
�
�L
��
+

�

1� �
�
�H � �L

�
See appendix for continuous case.
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Contiuous Version Assume quality � 2
�
�; ��
�
and quality q (�) is increasing strictly.

U (�) = �q (�)� p (q (�)) � �q (� ��)� p (q (� ��))

and when �! 0, we have

�q0 (�)� p0 (q (�)) q0 (�) = 0

Mirrlee�s trick (1971):

U 0 (�) = q (�) + q0 (�)� p0 (q (�)) q0 (�)
= q (�)

so that

U (�) =
R �
�
q
�
~�
�
d~� + u (�)

=
R �
�
q
�
~�
�
d~�

where u (�) = 0.

Pro�t from type � consumer would be

p (q (�)) = �U (�) + �q (�)

and

max
�
� =

R ��
�
[p (q (�))� c (q (�))] f (�) d�

=
R ��
�
[�U (�) + �q (�)� c (q (�))] f (�) d�

=
R ��
�

h
�
R �
�
q
�
~�
�
d~� + �q (�)� c (q (�))

i
f (�) d�

Integration by parts

d
R �
�
q
�
~�
�
d~� (�1 + F (�))
d�

=
R �
�
q
�
~�
�
d~�f (�) + q (�) [�1 + F (�)]

and having F
�
��
�
= 1 and R �

�
q
�
~�
�
d~� = 0
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Hence, we have

R ��
�

R �
�
q
�
~�
�
d~�f (�) d� = �

R ��
�
q
�
~�
�
[�1 + F (�)] d�

and

max
q
� =

R ��
�

h
�q
�
~�
�
� c (q (�))

i
f (�)� q (�) [�1 + F (�)] d�

with FOC being

[� � c0 (q (�))] f (�)� [1� F (�)] = 0

) c0 [q (�)] = � � 1� F (�)
f (�)

such that

c0
�
q
�
��
��
= ��

A.4 Dynamic Games of Incomplete Information

A.4.1 Intuitive Criterion

Equilibrium domination:

mj is equilibrium dominated for ti if

U�s (ti) > max
ak
Us (mj; ak; ti)

Requirement 4: Intuitive criterion

If mj is equilibrium dominated for ti, then, if possible,

� (ti j mj) = 0

A.4.2 Applicaton: Limit pricing

Milgrom and Roberts (1982; Econometrica)

Two types of monopolist: High cost and Low cost t 2 fH;Lg
Period 1: monopolist sets price p.

Period 2: Observing the price, entrant makes decision to enter e 2 f0; 1g. If entered,
it is duopoly. Otherwise, it is monopoly.

Incumbent�s strategy: P : fL;Hg ! R+
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Entrant�s strategy: E : R+ ! f0; 1g
Entrant�s belief bt : R+ ! [0; 1] or bL (p) + bH (p) = 1 for all p.

Incubment�s payo¤:

V (p; e; t) = � (p; t) + e�d (t) + (1� e)�m (t)

Entrant�s payo¤:

U (p; e; t) =

(
�e (t)

0

if enter

otherwise

Assumptions:

1. � is strictly concave in p.

2. Entry is not pro�table for low cost monopolist: �e (H) > 0 > �e (L)

3. No entry is better for incumbent: �m (t) > �d (t)

4. Low cost is good for incumbent: �m (L) > �m (H) and �d (L) > �d (H)

5. Low cost �rm has better advantage in monopoly then duopoly

�m (L)� �d (L) � �m (H)� �d (H)

6. In the �rst stage, advantage of lower cost is higher when price is lower:

� (p; L)� � (p;H) > � (p0; L)� � (p0; H) ;8p < p0

Single crossing property (SCP):

Now combining 5 and 6, we have for all p < p0

� (p; L)� � (p0; L) > � (p;H)� � (p0; H)
) [�m (L) + � (p; L)]�

�
�d (L) + � (p0; L)

�
> [�m (H) + � (p;H)]�

�
�d (H) + � (p0; H)

�
) V (p; 0; L)� V (p0; 1; L) > V (p; 0; H)� V (p0; 1; H)
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Moreover, from 6, we have

� (p; L)� � (p0; L) + �d (L)� �d (L) > � (p;H)� � (p0; H) + �d (H)� �d (H)
� (p; L)� � (p0; L) + �m (L)� �m (L) > � (p;H)� � (p0; H) + �m (H)� �m (H)

so we have, for e 2 f0; 1g

V (p; e; L)� V (p0; e; L) > V (p; e;H)� V (p0; e;H)

SCP implies: if a low-cost incumbent su¤ers more from same level of entry and same

price change and hence willing to accept deeper price cut to deter entry.

Perfect Bayesian Equilibrium requires:

(E1): p (t) 2 argmaxP V (p; E (p) ; t), 8t 2 fL;Hg
(E2): E (p) 2 argmaxeEtU (p; et), t 2 b (p)
(E3): Bayes consistency:

Pooling equilibrium: P (L) = P (H)) bL (P (L)) = b
0
L

Correct Belief: P (L) 6= P (H)) bL (P (L)) = bH (P (H)) = 1

(E4): Intutive criterion:

bt (p) = 1

if for t 6= t0

V (p; 0; t) � V (P (t) ; E (P (t)) ; t)
V (p; 0; t0) < V (P (t0) ; E (P (t0) ; t0))

First line: improve the type t; Second line: worse for type t0. Then it should be type t.

There is a pooling equilibrium would be limiting price that incumbent charge at the

price that deters entry.

Proof.

Let pmt = argmaxp�(p; t). Note that p
m
L < p

m
H .

De�ne ~bL be the belief that entrant is indi¤erent about entry at some equilibrium:

~bL�
e(L) + (1� ~bL)�e(H) = 0
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De�ne p and �p be the interval such that for any p̂ 2 [p; �p]

V (p̂; 0; H) > V (pmH ; 1; H)

Consider pmL � p and bL � ~bL.
Consider

P (L) = P (H) = p0 2 [p; pmL ]

and

E(p) =

(
0

1

for p � p0

for p > p0

and

bL(p) =

(
b0L
0

for p � p0

for p > p0

These satisfy E1-E3. check E4.

For all p < p0, pro�ts are lower for both type, so E4 doesn�t apply.

Let p00 such that V (p0; 0; H) = V (p00; 0; H). (Concavity of V )

For all p 2 (p0; p00], V (p; 0; H) � V (p0; 0; H). Hence, bL(p) = 0.
For p > p00, by SCP, we hve V (p00; 0; L) < V (p0; 0; L) and hence by concavity of �, we

have p00 > pmL .

Hence, V (p; 0; L) < V (p00; 0; L) and V (p; 0; L) < V (p0; 0; L) so that bL(p) = 0.
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