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1 Introduction

In this topic, we cover how an individual makes decision under uncertainty

1.1 Reading:

1. Snyder and Nicholoson, Chapter 7, Microeconomic Theory: Basic Principles and

Extensions, 11th edition, 2012

2. Pratt, J. W., "Risk aversion in the small and in the large," Econometrica 32,

January�April 1964, 122�136.

2 Uncertainty

Lottery h = (x; y; p; 1� p): wealth is x with probability p and y with probability 1� p.
Expected value of lottery Eh = px+ (1� p) y
Fair lottery: E (h) = 0

Is people always willing to participate fair lottery?

St. Petersburg paradox
A coin is �ipped until a head appears If a head appears on the nth �ip, the player is

paid $2n

Eh =
X1

i=1
2i
�
1

2

�i
=1
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Hence, utility of lottery is NOT the expected value of lottery.

2.1 Expected Utility

von Neumann-Morgenstern Theorem: If consumer�s preference satis�es the below
four axioms, the consumer preference can be represented by a utility function

Completeness: for any lottery x; y; either xRy, yRx or both
Transitivity: If xRy and yRz, then xRz
Continuity: If xRyRz, then there exists 0 � p � 1 such that px+(1�p)z is indi¤erent
with y

Independence: If xRy, then for any lottery z, and 0 � p � 1, we have px + (1 �
p)zRpy + (1� p)z
Cardinal utility: di¤erence matters.

Under the theorem, individuals act as if they are maximizing expected utility.

St. Petersburg game may converge to a �nite expected utility value if utility is concave.

2.2 Risk Attitude

Risk attitude

1. Risk-loving: willing to accept fair bet and even unfair bet

2. Risk-neutral: indi¤erent to fair bet

3. Risk-aversed: refuse fair bet

St. Petersburg paradox: most of us are risk-aversed

Natural measure of risk attitude: risk premium:

(Absolute) Risk Premium (RP (h;W )): amount needed to take lottery h given wealth

W

U(W + E(h)�RP ) = EU(W + h)

(Absolute) Certainty equivalent (CE(h;W )) of lottery h = (x; y; p; 1� p) is

U(CE) = EU(W + h) = pU(W + x) + (1� p)U(W + y)

By construction, U(CE) = U(W + E(h)�RP ), so
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CE = W + E(h)�RP

Relative Risk Premium (RRP (h;W )): relative amount of wealth needed to take lottery

hW given wealth W

U(E(hW )�W �RRP ) = EU(hW )

By rewriting, we have

W �RRP (h;W ) = RP (hW;W )

Risk Premia depends on lottery. We can decompose risk premium into riskiness of

lottery (variance of lottery) and risk preference (utility):

Absolution risk premium: Arrow-Pratt�s absolute risk aversion (ARA)

r (W ) = �U
00 (W )

U 0 (W )

Proof. De�nition of risk

E[U(W + h)] = U(W + E (h)� ARP (h;W ))

Consider fair bet E (h) = 0 and taylor series expansion:

LHS : U(W � ARP ) = U(W )� ARP � U 0(W ) + : : :

RHS : E[U(W + h)] = E[U(W )� hU 0(W ) + h
2

2
U 00(W ) + : : :]

= U(W )� E(h)U 0(W ) + E
�
h2

2

�
U 00(W ) + : : :

= U(W ) +
V ar(h)

2
U 00(W ) + : : :
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Dropping higher order terms, we have

U(W )� ARP � U 0(W ) = U(W ) +
V ar(h)

2
U 00(W )

ARP (h;W ) = �U
0(W )

U 00(W )
� V ar(h)

2

=
V ar(h)

2
r (W )

Relative size: Arrow-Pratt�s relative risk aversion (RRA)

rr (W ) = �WU
00 (W )

U 0 (W )

Proof. By de�nition, we have ARP (Wh;W ) =W �RRP (h;W ) so that we have

RRP (h;W ) =
1

W
ARP (Wh;W )

= � 1

W

U 0(W )

U 00(W )
� V ar(Wh)

2

= �WU
0(W )

U 00(W )
� V ar(Wh)

2

=
V ar(h)

2
rr (W )

Mean-variance preference:

Quadratic Utility: U(W ) = aW � bW 2.

EU(W + h)

= aE(W + h)� bE((W + h)2)

= a(W + E(h))� bE(W 2 + 2Wh+ h2)

= a(W + E(h))� b[W 2 + 2WE (h) + V ar (h) + (E (h))2]

so it only depends on mean and variance of lottery.

Constant absolute aversion and lottery follows normal distribution (U(w) = �e�rW )
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When h follows normal distribution with mean � and variance �2, the pdf is

f (h) =
1p
2��2

exp

 
�(h� �)

2

2�2

!

Expected utility will be

E (U (W + h))

=

Z 1

�1
U (W + h) f (h) dh

=

Z 1

�1
�e�r(W+h) 1p

2��2
e�

(h��)2

2�2 dh

= �e�rW
Z 1

�1

1p
2��2

e�
2rh�2+(h��)2

2�2 dh

= �e�rW
Z 1

�1

1p
2��2

e�
2�r�2+r2�4+(h��+r�2)

2

2�2 dh

= �e�(rW+�r� 1
2
r2�2)

Z 1

�1

1p
2��2

e�
(h��+r�2)

2

2�2 dh

= �e�(rW+�r� 1
2
r2�2) = U

�
W + �� 1

2
r�2
�

2.3 Application

2.3.1 Diversi�cation

Consider there are two identical stocks with same means � and same variances �2 but

zero covariance. Then invest all money in one of two stocks gives expected return of

� and variance �2. However, if the investor splits � porton of the money into one

stock and (1� �) to another stock. The expected return is still � but variance is�
�2 + (1� �)2

�
�2. At the minimium, variance of the portfolio is �2=2 when � = 1=2.

2.3.2 Contingent Commodity

Two states of the world: good states and bad states. Each state is associated with one

good: Wg and Wb. Probability of good state is � and that of bad state is 1��. Hence,
expected utility is

EU = �U (Wg) + (1� �)U (Wb)
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and the budget constraint is pgWg + pbWb � W . Assuming interior solutions, we have

MRS =
@EU=@Wg

@EU=@Wb

=
�U 0 (Wg)

(1� �)U 0 (Wb)
=
pg
pb

Under an actuarially fair market, price ratio and odd ratio are equal

pg
pb
=

�

1� �

so that
U 0 (Wg)

U 0 (Wb)
= 1

By strict concavity of U , we have Wg = Wb. Hence, individuals will try to make

themselves on the certainty line.

2.3.3 Insurance

An application of contingent commodity. Individual has initial wealth of W facing

a potential loss of L with probability �. Insurance company o¤ers insurance with

premium p for per dollar coverage. The individual chooses coverage level q:

max
q
�U (W � L� pq + q) + (1� �)U (W � pq)

The �rst order condition implies

(1� p)�U 0 (W � L� pq + q)� p (1� �)U 0 (W � pq) = 0

so that
�

1� �
U 0 (W � L� pq + q)

U 0 (W � pq) =
p

1� p
The second order condition is

(1� p)2 �U 00 (W � L� pq + q) + p2 (1� �)U 00 (W � pq)

which is negative if U 00 < 0.

Under actuarial fair market (competitive insurance market), expected pro�t of the

insurance is zero:

(1� �) pq � �q (1� p) = 0
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so that p = � and hence
U 0 (W � L� pq + q)

U 0 (W � pq) = 1

By strict concavity of U , we haveW�L�pq+q = W�pq, or q = L. Hence, risk-averse
individual will take ful coverage under actaurial fair market.

A Review of probability

A.1 Descriptive Statistics

1. Descriptive statistics gives a clearer picture of the data: numerical or visual

representation.

2. Three main types of numerical representation: central tendency, dispersion and

shape. Central tendency is measuring where most data are. Dispersion is about

how spread data are. It is also telling how accurate of measure of central tendency

is. Shape includes skewness and kurtosis(peakedness).

3. Central tendency: mean (�x =
Pn

i=1 xi=n), median (the middle data) and mode

(most frequent data). Introduction of sequence and Summation notation.

(a) Example 1: 1, 2, 3, 3, 4, 5. mean= median = mode = 3

(b) Example 2: 1, 2, 3, 4, 5. median = 3.

(c) Example 3: 1, 2, 3, 4, 5, 6. median = 3.5.

(d) Other averages: weighted average (�xw =
Pn

i=1 xiwi=
Pn

i=1wi), moving aver-

age, geometric mean, harmonic mean

4. Dispersion: range(maxxi � minxi), interquartile range IQR (IQR = Q3 � Q1)
(Q1 = median of 1st half data and Q3 = median of 2nd half of data, de�nition

of percentile and quartile), variance(�2 =
P
(xi � �x)2 =n), standard deviation

(� =
p
�2), �ve-number summary, coe¢ cient of variation (CV = �=�x)

(a) Motivating example: (data set 1) 7, 8, 8, 9 and (data set 2) 6, 8, 8, 10.

Both data sets have same mean, median and mode but data set 1 are more

concentrated near around the mean.
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(b) Numerical Example: 1, 2, 2, 3, 3, 3, 4, 4, 5. Mean = median = mode = 3,

Range = 4, IQR = 2, variance = 4/3 and standard deviation = 2=
p
3.

(c) Remark: In the textbook, IQR is calculated di¤erently. The formula is

Q1 = 0:25� (n+ 1)th data and Q3 = 0:75� (n+ 1)th data. Example: Data
set is 2; 3; 4; 5; 6; 7. Q1 = 0:25� (6 + 1) = 7=4th data = 2� 1

4
+ 3� 3

4
= 11

4
.

However, in our de�nition, Q1 = 3.

5. Shape: skewness (
P
(xi � �x)3 =n) measures how asymmetric data is and kurtosis

(
P
(xi � �x)4 =n) tells thickness of the tail.

6. Appropriate visual representation depends on purpose of presentation and data

source. Graphs: pie chart, bar chart, histogram, scatter plot, radar chart, stem-

and-leave graph, box-plot, frequency table.

A.2 Probability Theory

1. De�nition of Probability: Frequentist (long run relative ratio) versus Bayesian

(subjective belief).

2. Basic Terminology:

(a) Random Experiment: something is going to occur, but we don�t know what

will happen (recall that we are talking frequentist probability, for something

to occur in the long run, we can de�ne random experiment meaningfully as

something can repeat itself for many times.)

(b) Outcome: one possibility of random experiment

(c) Sample space: all possible outcomes

(d) Event: a group of outcomes

(e) Example 1: Rolling a die. 1 is an outcome and 2, 3, 4, 5, 6 are also outcomes.

Hence, the sample space S = f1; 2; 3; 4; 5; 6g. Even outcomes E = f2; 4; 6g
is an event, Odd outcomes O = f1; 3; 5g is an event, and Large outcomes
L = f4; 5; 6g is also an event.

(f) Example 2: rolling two dies: S = f(1; 1) ; (1; 2) ; : : : ; (6; 6)g where the �rst
and second entries are the number of the �rst and the second dies. Total

number of outcome is 36. The event "The sum of two dies is less than
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4" consists of outcomes (1; 1),(1; 2) and (2; 1). Clearly, (1; 2) and (2; 1) are

di¤erent events.

(g) Permutation and Combination: they will simplify calculations of number of

outcomes for complicated events but we will skip this part in this course.

3. Operation on Events:

(a) Intersection: looking for common outcomes in events, like "AND", similar

to �nding "H.C.F." Example: E \ L = f4; 6g, O \ L = f5g.

(b) Union: looking for all outcomes in events, like "OR", similar to �nding

"L.C.M." Example: E [ L = f2; 4; 5; 6g, O [ L = f1; 3; 4; 5; 6g.

(c) Complement: looking for outcomes not in the event (but in sample space),

like "NOT". Example: EC = f1; 3; 5g = O, �L = f1; 2; 3g

4. Properties of events

(a) Mutually Exclusive Events: cannot happen at the same time so that the

interesection is empty. Example: E \ L = �.

(b) Collectively Exhaustive Events: union of all events IS the sample sapce.

Example: E [O = S.

(c) Mutually Exclusive and Exhaustive events: also call partition of sample

space. We call P1; P2; : : : ; Pn is a partition of sample sapce if they are

mutually exclusive (Pi\Pj = � for all i 6= j) and exhaustive (P1[P2[ : : :[
Pn = S).

5. Axiomatic de�nitions of probability :

(a) Axiom 1: for any event A, we have 0 � Pr (A) � 1.

(b) Axiom 2: If event A happens if and only if one of outcomes O1; O2; : : : ; On
happens (A = fO1; O2; : : : ; Ong), then we have

Pr (A) =
nX
i=1

Pr (Oi) .

(c) Axiom 3: Pr (S) = 1 where S is the sample space.
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6. Example 1: rolling a fair die: S = f1; 2; 3; 4; 5; 6g. Since the die is fair, each
outcome is equally likely. By axioms, it must be Pr (1) = Pr (2) = Pr (3) =

Pr (4) = Pr (5) = Pr (6) = 1=6. By axiom 2, we have Pr (E) = Pr (2) + Pr (4) +

Pr (6) = 3=6 = 1=2. (Remark: Of course, the die might be unfair so that certain

outcome is more likely than others but it does not violate any axioms.)

7. Three axioms also implies three rules:

(a) Complement rule: Pr (A) = 1�Pr
�
�A
�
or Pr (A) = 1�Pr (A) which is quite

useful sometimes.

(b) Addition Rule: Pr (A [B) = Pr (A)+Pr (B)�Pr (A [B) can be jusi�ed by
drawing a diagram or from the Inclusion-exclusion principle in set theory.

(c) Total probability rule: Pr (S) =
Pn

i=1 Pr (Pi) if P1; P2; : : : ; Pn is a partition

of sample sapce. Clearly, it follows from addition rule. (We will use it a lot

in Bayes theorem)

8. Odd ratio in favor of A: Odds = Pr (A) =Pr
�
�A
�
= Pr (A) = [1� Pr (A)]. Special

terms used in the gambling industry.

9. Conditional probability: how to update probability when we know something is

true. Since the sample space changes, we have to update it

Pr (A j B) = Pr (A \B)
Pr (B)

which can be justi�ed by a diagram or argument of counting number of outcomes.

(Of course, we have assumed Pr (B) > 0.)

10. De�nition of Statisticaly Indenpendence: Events A and B are (statistically) in-

dependent if and only if

(a) Pr (A j B) = Pr (A) or Pr (B j A) = Pr (B)

(b) Pr (A \B) = Pr (A) Pr (B) (given Pr (A) > 0 and Pr (B) > 0)

11. Multiplication Rule: just rearrange the de�nition of conditional probability

Pr (A \B) = Pr (A j B) Pr (B)
= Pr (B j A) Pr (A)
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12. Bayes Theorem

Pr (A j B) = Pr (B j A) Pr (A)
Pr (B)

(a) Proof. From de�nition of condition probability,

Pr (A j B) = Pr (A \B)
Pr (B)

and by multiplication rule, we have

Pr (A \B) = (B j A) Pr (A)

so that we have

Pr (A j B) = (B j A) Pr (A)
Pr (B)

as requested.

(b) This is the central idea of learning. We update our information as we have

new information. Clearly, even people have di¤erent beliefs at the beginning,

as more new information coming out, ultimately, we will know the true

state of the world. (Of course, more often the time, we don�t have enough

information coming out to judge, so we have disagreement.)

(c) Example: 10% of population has a certain disease. The only cure of disease

is dangerous: can completely cure the diesase but kill the patient if he/she

does not have the diease. A scientist invented a test with 90% accuracy: if

the patienet has the disease, 90% of time the test gives positive results; and

if the patienet is healthy, 90% of time the test gives negative results. Then

a natural question: what is the probability that a person has the disease if

the test result is positive?

You are given

Pr (disease) = 0:1,

Pr (+ve j disease) = 0:9 , and

Pr (-ve j no disease) = 0:1:
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The question is asking for Pr (disease j +ve). By Bayes theorem, we have

Pr (disease j +ve) = Pr (+ve j disease) Pr (disease)
Pr (+ve)

Note that we know everything in the numerator. For the denominator, we

need to use the total probability rule, that is,

Pr (+ve) = Pr (+ve j disease) Pr (disease)+Pr (+ve j no disease) Pr (no disease)

For Pr (+ve j no disease) and Pr (no disease), we use complement rule that

Pr (+ve j no disease) = 1� Pr (-ve j no disease) = 0:9
Pr (no disease) = 1� Pr (disease) = 0:9

Hence, we have

Pr (disease j +ve) = (0:9) (0:1)

(0:9) (0:1) + (0:9) (0:1)
= 0:5

so that even the test is highly accurate but positive result does not mean

the person has high probability of getting the disease.

A.3 Random Variable

1. Random variable: Mapping outcomes to numbers. Why? Then we can describe

probability of events in sample space easily because we have the tool �function�

in mathematics which help us relate two di¤erent sets of numbers.

(a) Example 1: Tossing a coin once. Sample sapce S = fHead; Tailg. Say we
de�ne X to be a random variable of total number of heads. Then outcome

of head means X = 1 and outcome of tail means X = 0.

(b) Example 2: Tossing a coin twice. Sample sapce S = fHH, HT, TH, TTg
where H means Head and T mean tail. Say we de�ne X to be a random

variable of total number of heads. Then X = 0 means TT, X = 1 means

union of HT and TH and X = 2 means HH.

2. Discrete random variable: the number of outcome in the sample space is �nite.
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Then we can assign integers to each outcome in sample space.

(a) Probability distribution function:

p (x) = Pr (X = x)

(b) Cumulative probability function:

F (x) = Pr (X � x)

(c) Example 3. Rolling a fair die. Sample space S = f1; 2; 3; 4; 5; 6g. Let X be

the random variable of face value of the die. Then X can be integers from

1 to 6 (inclusive).
X 1 2 3 4 5 6

p (x) 1
6

1
6

1
6

1
6

1
6

1
6

F (x) 1
6

2
6

3
6

4
6

5
6

6
6

Draw p (x) and F (x).

(d) Expectation value: weighted mean of random variable with probability dis-

tribution function as weights.

E (X) =
X

xp (x)

since
P
p (x) = 1. We often deonte E (X) = �X .

(e) Variance:

V ar (X) =
X

[x� E (X)]2 p (x)

We often deonte V ar (X) = �2X .

(f) Example 3 (revisited). Rolling a fair die. Expected value of X is

E (X) = 1

�
1

6

�
+ 2

�
1

6

�
+ 3

�
1

6

�
+ 4

�
1

6

�
+ 5

�
1

6

�
+ 6

�
1

6

�
= 3:5

13



and variance of X is

V ar (X) = (1� 3:5)2
�
1

6

�
+ (2� 3:5)2

�
1

6

�
+ (3� 3:5)2

�
1

6

�
+(4� 3:5)2

�
1

6

�
+ (5� 3:5)2

�
1

6

�
+ (6� 3:5)2

�
1

6

�
= 2: 916 7

(g) Properties of expectation and variance functions:

E (a+ bX) = a+ bEX

V ar (a+ bX) = b2V arX

3. Continuous Random Variable: Mapping outcome to real numbers.

(a) Cumulative probability function:

FY (y) = Pr (Y � y) =
Z y

�1
f (v) dv

(b) Probability distribution function: (not needed)

fY (y) =
dFY (y)

dy

(c) Expectation and Variance: (not needed)

E (Y ) =

Z 1

�1
yf (y) dy

V ar (Y ) =

Z 1

�1
[y � E (Y )]2 f (y) dy

4. Commonly used discrete distributions: Bernoulli, Binomial, Possion, uniform (all

skipped)

5. Commonly used continuous distributions: uniform, normal, Chi-square, student�s

t, F-distribution

(a) Uniform: each outcome in sample space is equally likely (skipped)
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(b) Normal: Invented by Gauss as measurement of error. By Central Limit

Theorem it is very common. Starndardization of normal random variable.

Property of standard normal. Tables looking up.

Example 4: Let Z follow a standard normal distribution. Using the table,
we can

(a) �nd Pr (Z < 1:4) = 0:9192

(b) �nd Pr (�1:6 < Z < 1:4) = 0:9192� (1� 0:9452) = 0:864 4,
(c) �nd Pr (Z < �1:5) = 1� 0:9332 = 0:066 8.
Conversevly, we can answer the following questions:

(d) The probability is 0.5 that Z is less than what number? 0

(e) The probability is 0.2 that Z is greater than what number? �0:845
(f) The probability is 0.5 that Z is in the symmetric interval about the mean

between two numbers? �0:675, 0:675
Furthermoer, if X follows a normal distribution with � = 20 and �2 = 16.

Then we can

(g) �nd the probability thatX is greater than 24: Pr (X > 24) = Pr (Z > 1) =

1� 0:8413 = 0:1587,
(h) �nd the probability thatX is between than 16 and 24: Pr (16 < X < 24) =

Pr (�1 < Z < 1) = 0:8413� (1� 0:8413) = 0:682 6

(c) Chi-square: sum of squared of independent variables with standard normal

distributions (skipped)

(d) Student�s t, F-distribution: for hypothesis testings (skipped)
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