
 EC 4101: Microeconomic Analysis III 
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 All relevant details on EC4101 are in the 
syllabus 

 
3 suggestions 

• Please follow the textbook and lectures closely. 

• Use the material on the slides to guide you through the material in 
the textbook. 

• Try solving all the assignments even if you might not be the 
designated student. 
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 What is the job of an economic theorist? 



• The Raft of Medusa (1819) - Jean Louis Théodore Géricault 

• Moment from the aftermath of the wreck of the French naval frigate 
Méduse, which ran aground off the coast of today's Mauritania on July 5, 
1816 

• Take a real situation or story or thought … that exists and represent it in a 
useful manner 

sourcefiles/The_Raft_of_the_Medusa.pdf
sourcefiles/The_Raft_of_the_Medusa.pdf
http://upload.wikimedia.org/wikipedia/commons/f/f1/G%C3%A9ricault_-_La_zattera_della_Medusa.jpg


• Mars Rover Spirit (2004) 

• The objective is to do something that is 
practically useful 

http://marsrover.nasa.gov/newsroom/pressreleases/20110104b.html


What is EC 4101 about? 
• Microeconomic theory is about modeling individual 

consumer and firm behavior in a mathematically to allow 
technically mature analysis. 
 

• EC 3101 gives some description of these models – focuses 
on covering many topics rather than details 
– This description not enough for serious analysis 

 

• EC4101 focuses on giving you the full technical description 
of those models 
– This description is useful for serious analysis 

 

• Of course, that means we cannot cover as many topics. 



Chapter 2 

Mathematics for 
Microeconomics 

     This file is a summary of the basic maths that you 

should know (but we do not have the time to go over in 

lecture). So keep it handy for future consultation. 

  

   You will notice at a few places parenthesis such as 

“(’’ and “)’’ not aligned properly. This is not my fault – it’s 

the slightly distorted pdf conversion. 



The Mathematics of Optimization 

• Economic theories assume that an economic 
agent is seeking to find the optimal value of 
some function 

– consumers seek to maximize utility 

– firms seek to maximize profit 

• This chapter reviews the mathematics that go 
into these problems 



Functions with One Variable 

• Simple example: Manager of a firm wants to 
maximize profits 
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Functions with One Variable 

• Vary q to see where maximum profit occurs 

– an increase from q1 to q2 leads to a rise in  
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Functions with One Variable 

• If output is increased beyond q*, profit will 
decline 

– an increase from q* to q3 leads to a drop in  
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Derivatives 

• The derivative of  = f(q) is the limit of 
/q for very small changes in q 
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• The value depends on the value of q1 



Value of a Derivative at a Point 

• The evaluation of the derivative at the 
point q = q1 can be denoted 
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• In our previous example, 
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First Order Condition for a Maximum 

• For a function of one variable to attain its 
maximum value at some point, the 
derivative at that point must be zero 
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Second Order Conditions 

• The first order condition (d/dq) is a 
necessary condition for a maximum, but it 
is not a sufficient condition 
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If the profit function was u-shaped, 

the first order condition would result 

in q* being chosen and  would 

be minimized 



Second Order Conditions 

• This must mean that, in order for q* to be 
the optimum,  
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• At q*, d/dq must be 

decreasing  

– the derivative of 

d/dq must be 

negative at q* 
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Second Derivatives 

• The derivative of a derivative is called a 
second derivative 

• The second derivative can be denoted by 
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Second Order Condition 

• The second order condition to represent a 
(local) maximum is 
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Rules for Finding Derivatives 
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Rules for Finding Derivatives 

– a special case of this rule is dex/dx = ex 
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Rules for Finding Derivatives 

• Suppose that f(x) and g(x) are two functions 
of x and f’(x) and g’(x) exist 

• Then 
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Rules for Finding Derivatives 
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Rules for Finding Derivatives 
• If y = f(x) and x = g(z) [so y = f(g(z))] and if 

both f’(x) and g’(x) exist, then: 
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– this is called the chain rule   

– allows us to study how one variable (z) 

affects another variable (y) through its 

influence on some intermediate variable (x) 



Rules for Finding Derivatives 
• Some examples of the chain rule include 
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Example of Profit Maximization 
• Suppose that the relationship between profit 

and output is 

 = 1,000q - 5q2 

• The first order condition for a maximum is 

d/dq = 1,000 - 10q = 0 

q* = 100 

• Since the second derivative is always   -10,    
q = 100 is a global maximum 



Functions of Several Variables 

• Most goals of economic agents depend on 
several variables 

– trade-offs must be made 

• The dependence of one variable (y) on a 
series of other variables (x1,x2,…,xn) is 
denoted by 
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Partial Derivatives 

• The partial derivative of y with respect to x1 
is denoted by 
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– in calculating the partial derivative, all of 

the other x’s are held constant 



Partial Derivatives 

• A more formal definition of the partial 
derivative is 
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Calculating Partial Derivatives 
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Calculating Partial Derivatives 
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Partial Derivatives 

• Partial derivatives are the mathematical 
expression of the ceteris paribus 
assumption 

– show how changes in one variable affect some 
outcome when other influences are held 
constant 



Second-Order Partial Derivatives 

• The partial derivative of a partial derivative 
is called a second-order partial derivative 
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Young’s Theorem 

• Under general conditions, the order in 
which partial differentiation is conducted to 
evaluate second-order partial derivatives 
does not matter 
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Functions of Several Variables 

• Suppose an agent wishes to maximize 

y = f (x1,x2,…,xn) 

• The change in y from a change in x1 
(holding all other x’s constant) is 
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 – the change in y is equal to the change in x1 

times the slope (measured in the x1 

direction) 
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Party time! Let’s make the change bigger 



Total Differential 

• Suppose that y = f(x1,x2,…,xn) 

• If all x’s are varied by a small amount, the 
total effect on y will be 

n

n

dx
x

f
dx

x

f
dx

x

f
dy














 ...

2

2

1

1

nn xfxfxfy  ...2211

nndxfdxfdxfdy  ...
2211











1x
2x

2211 xfxfy 

nn xfxfxfy  ...2211



First-Order Condition for a Maximum 
• A necessary condition for a maximum of the 

function f(x1,x2,…,xn) is that dy = 0 for any 
combination of small changes in the x’s  

– this can only be true if 

0...21  nfff

•  A point where this condition holds is 

   called a critical point 

nn xfxfxfy  ...2211



Second-Order Conditions 
• This condition is not sufficient to ensure a 

maximum 

– we need to examine the second-order partial 
derivatives of the function f 

– conditions that will make f concave would be 
sufficient for a maximum 



Finding a Maximum 
• Suppose that y is a function of x1 and x2 

y = - (x1 - 1)2 - (x2 - 2)2 + 10 

y = - x1
2 + 2x1 - x2

2 + 4x2 + 5 

• First-order conditions imply that 
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Implicit Functions 
• An “explicit” function which is shown with 

a dependent variable (y) as a function of 
one or more independent variables (x) such 
as 

y = mx + b 

   can be written as an “implicit” function 

y – mx – b = 0 

f(x,y,m,b) = 0 



Derivatives from Implicit Functions 
• It will sometimes be helpful to compute 

derivatives directly from implicit functions 
without solving for one of the variables 
directly 
– the total differential of  g(x,y) = 0 is 

0 = gxdx + gydy 

– this means that 
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Implicit Function Theorem 

• It may not always be possible to locally solve 
implicit functions of the form g(x,y)=0 for 
unique explicit functions of the form y = f(x) 
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Implicit Function Theorem 

• It may not always be possible to locally solve 
implicit functions of the form g(x,y)=0 for 
unique explicit functions of the form y = f(x) 
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The Envelope Theorem 

• The envelope theorem concerns how the 
optimal value for a function changes when a 
parameter of the function changes 

– this is easiest to see by using an example 



The Envelope Theorem 

• Suppose that y (ice cream seller’s profit) is a 
function of x (ice cream output) 

y = -x2 + ax 

• If a (temperature) is assigned a specific value, 
then y becomes a function of x only and the 
value of x that maximizes y can be calculated 



How does the profit depend on temperature? 
Use the Envelope Theorem 

Value of a Value of x* Value of y*(Profit) 

0 0 0 

1 1/2 1/4 

2 1 1 

3 3/2 9/4 

4 2 4 

5 5/2 25/4 

6 3 9 
 

 

Optimal Values of x and y for Alternative Values of a 
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As a increases, 

the maximal value 

for y increases 

The relationship 

between a and y 

is quadratic 

The Envelope Theorem 
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The Envelope Theorem 

• Suppose we are interested in how y* changes 
as a changes 

 

 

• There are two ways we can do this 

– calculate the slope of y* directly 

– apply envelope theorem 
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The Direct Approach 
• To calculate the slope of the function, we 

must solve for the optimal value of x for any 
value of a 

dy/dx = -2x + a = 0 

x* = a/2 

• Substituting, we get 

y* = -(x*)2 + a(x*) = -(a/2)2 + a(a/2) 

y* = -a2/4 + a2/2 = a2/4 



The Direct Approach 
• Therefore, 

dy*/da = 2a/4 = a/2 

 

• We can save time by using the envelope 
theorem (x* may not also be explicit) 

– for small changes in a, dy*/da can be computed by 
holding x at x* and calculating y/a directly from 
y 



The Envelope Theorem Way 

y/ a = x 

• Holding x = x* 

y/ a = x* = a/2 
 

• This is the same result found earlier 



The Envelope Theorem 
• The change in the optimal value of a function 

with respect to a parameter of that function 
can be found by partially differentiating the 
objective function while holding x (or several 
x’s) at its optimal value 
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The Math of Envelope Theorem 

• How did the formula come about? We have 
from maximizing y = f [x1,x2,a] with respect to x1 

and x2 

   y* = f (x1*(a), x2*(a),a) 

• Taking derivative w.r.t. a 
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The Envelope Theorem: Extention 

• This can be extended to the case where y is a 
function of several variables 

y = f(x1,…xn,a) 
 

• Finding an optimal value for y would consist of 
solving n first-order equations  

y/xi = 0    (i = 1,…,n) 



The Envelope Theorem 

• Optimal values for these x’s would be a function 
of a 

 

x1* = x1*(a) 

x2* = x2*(a) 

xn*= xn*(a) 

. 

. 

. 



The Envelope Theorem 

• Substituting into the original objective function 
gives us the optimal value of y (y*) 

y* = f [x1*(a), x2*(a),…,xn*(a),a] 

• Differentiating yields 
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The Envelope Theorem 

• Because of first-order conditions, all terms 
except f/a are equal to zero if the x’s are at 
their optimal values 
 

• Therefore, 
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Constrained Maximization 

• Suppose that we wish to find the values of 
x1, x2,…, xn that maximize 

y = f(x1, x2,…, xn) 
 

   subject to a constraint  

g(x1, x2,…, xn) = 0 



Lagrangian Multiplier Method 

• The Lagrangian multiplier method starts 
with setting up the expression 

 

ℒ = f(x1, x2,…, xn ) + g(x1, x2,…, xn)  

–  is called a Lagrangian multiplier 
 



Lagrangian Multiplier Method 

• First-Order Conditions 

ℒ /x1 = f1 + g1 = 0 

ℒ /x2 = f2 + g2 = 0 
 

. 

ℒ /xn = fn + gn = 0 

. 

. 

ℒ / = g(x1, x2,…, xn) = 0 

ℒ = f(x1, x2,…, xn ) + g(x1, x2,…, xn) 



Interpretation of Lagrangian Multiplier 

• Rate at which the maximum increases as the 
constraint is relaxed – shadow price for the 
constraint 



Constrained Maximization 

• Suppose a farmer had a certain length of 
fence (P) and wished to enclose the largest 
possible rectangular area 

– let x and y be the lengths of the sides 
 

• Problem: choose x and y to maximize the area 
(A = x·y) subject to the constraint that the 
perimeter is fixed at P = 2x + 2y 



Constrained Maximization 

• Setting up the Lagrangian multiplier: 

ℒ = x·y + (P - 2x - 2y) 

 

• The first-order conditions for a maximum are 

ℒ /x = y - 2 = 0 

ℒ /y = x - 2 = 0 

ℒ / = P - 2x - 2y = 0 



Constrained Maximization 

• Since y/2 = x/2 = , x must be equal to y 

– the field should be square 
 

• Since x = y and y = 2, we can use the 
constraint to show that 

x = y = P/4 

 = P/8 



Constrained Maximization 

• Interpretation of the Lagrangian multiplier 

–  suggests that an extra yard of fencing would add 
P/8 to the area 

 

– The Lagrangian multiplier provides information 
about the implicit value of the constraint 

 



• Suppose that we want to maximize 

y = f(x1,…,xn;a) 

   subject to the constraint 

g(x1,…,xn;a) = 0  

• Solve by setting partial derivatives of 

Lagrangian equal to 0 

 

Constrained Maximization & 
Envelope Theorem 



Constrained Maximization & 
Envelope Theorem 

• It can be shown that 

dy*/da = ℒ /a at (x1*,…,xn*;a)  

– the change in the maximal value of y from a 
change in a can be found by partially 
differentiating ℒ and evaluating the partial 
derivative at the optimal point 



Inequality Constraints (Not in the textbook) 

• In some economic problems the constraints 
need not hold exactly 

• Suppose we seek to maximize y = f(x1,x2) 
subject to 

g1 (x1,x2)  0, 

g2 (x1,x2)  0 



Lagrangian 

• We define 

• ℒ = f(x1, x2) + 1 g1 (x1,x2) + 2 g2 (x1,x2)  

• Now we write down the first order 
conditions for this Lagrangian 

• In this case the multipliers have specific 
signs: 1, 2 ≥ 0 

• Complementary slackness: at least one of  
gi (x1,x2)  or i must be zero at solution 



Kuhn-Tucker Conditions 

• Sometimes we have a standard constrained 
optimization problem with the additional 
constraints that the variables be non-negative. 

• In that case we bring in these non-negativity 
constraints as inequality constraints and work 
with the Lagragian the standard way 



Second Order Conditions - Functions of 
One Variable 

• Let y = f(x) 

• A necessary condition for a maximum is that 

dy/dx = f ’(x) = 0 

– to ensure that the point is a maximum, y must be 

decreasing for movements away from it 



Second Order Conditions – Sufficiency 
Condition 

 

• This means that the function f must have a 
concave shape at the critical point 
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Second Order Conditions - Functions of 
Two Variables 

• Suppose that y = f(x1, x2) 

• First order conditions for a maximum are 

y/x1 = f1 = 0 

y/x2 = f2 = 0 

– to ensure that the point is a maximum, y must 
diminish for movements in any direction away 
from the critical point 



Second Order Conditions - Functions of 
Two Variables 

 

f11 < 0, f11 f22 - f12
2 > 0 

 

The rest of the sufficiency conditions will be on a need-

to-know basis  

 



Quasi-Concavity 

• A function U is quasi-concave if for each 
number c the following set is convex 

 ( , ) | ( , )x y U x y c



Duality 

• Any constrained maximization problem has 
a dual problem in constrained minimization  

– focuses attention on the constraints in the 
original problem 



Integration 

• Integration is the inverse of differentiation 

– let F(x) be the integral of f(x) 

– then f(x) is the derivative of F(x) 
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Integration 

• We denote an integral as 

 dxxfxF )()(
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• If f(x) = x then 

– C is an arbitrary constant of integration 



Definite Integrals 

• We can also use integration to sum up the 
area under a function over some defined 
interval 
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Definite Integrals 
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