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Abstract

Central place theory is a key building block of economic geography and is an em-
pirically plausible description of city systems. As shown recently by Hsu (2008)
and Mori et al. (2008), it also provides a route to explain empirical regularities in
city size distribution and industrial locations. This paper formalizes central place
hierarchy by providing a rationale for it via a social planner’s problem in both one-
dimensional and two-dimensional spaces. We then use the optimal city hierarchy to
study efficiency properties of the equilibrium hierarchy in Hsu (2008).

JEL: R12; R13

Keywords: dynamic programming, central place theory, hexagonal market area, Zipf ’s

law, number-average size rule

∗Department of Economics, Chinese University of Hong Kong.
†Department of Economics, University of Minnesota, Federal Reserve Bank of Minneapolis, and the

National Bureau of Economic Research.
‡We are grateful for the comments and help received from Gilles Duranton, Yannis Ioannides, Samuel

Kortum, Erzo G. J. Luttmer, Frank Morgan, Shin-Kun Peng, and the seminar participants at Academia
Sinica, National Taiwan University, the Spring 2007 Midwest Economic Theory Meetings, and the 2008
North American Meetings of the Regional Science Association International. We also thank Paul Thomp-
son for permission to use his central place theory graph. The usual disclaimer applies.

1



1 Introduction

Central place theory describes how a city hierarchy is formed out of a featureless plain of

farmers. It is a key building block of economic geography (King, 1984) and dates back at

least to Christaller (1933). Many have argued for its empirical plausibility as a description

of city hierarchy (Fujita, Krugman, and Venables, 1999; Mori and Smith, 2008; Berliant,

2008). Although original central place theory is not a rigorous economic theory based on

incentives and equilibrium, many economists have found its insights appealing, and a few

attempts have been made to formalize it, including those by Eaton and Lipsey (1982),

Quinzii and Thisse (1990), Fujita, Krugman, and Mori (1999), Tabuchi and Thisse (2008),

and Hsu (2008).

The basic idea of this theory is that goods differ in their degree of scale economies

relative to market size. Goods for which this ratio is large, e.g., stock exchanges or

symphony orchestras, will be found in only a few places, whereas goods for which it is

small, e.g., gas stations or convenience stores, will be found in many places. Moreover,

large cities tend to have a wide range of goods, whereas small cities provide only goods

with low scale economies. Naturally, small cities are in the market areas of large cities for

those goods that they themselves do not provide. In Christaller’s scheme, the hierarchy

property1 holds if larger cities provide all of the goods that smaller cities also provide and

more.

Figure 1: Central Place Hierarchy on the Plane

In this paper, a city system has multiple layers of cities, and cities of the same layer

1This is often called the hierarchy principle in the literature.
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Figure 2: Central Place Hierarchy on the Line

have the same functions, i.e., they host the same set of industries. The driving force

behind the differentiation of cities is the heterogeneity of scale economies among goods,

which is modeled by heterogeneity in the fixed costs of production. In addition to the

hierarchy property, another defining feature of city hierarchy in central place theory, that

called the central place property, is that there is always only one next-layer city in between

(theoretically, in the middle of) neighboring larger cities. Christaller (1933) calls this the

K = 3 market principle.2 The city hierarchy described by central place theory (hereafter

central place hierarchy) is a city system in which both the hierarchy and central place

properties hold. Figures 13 and 2 show illustrations of such city hierarchies on the plane

and on the line, respectively. In the case of the plane, the market areas are hexagonal. In

the case of the line, the dimension of the range of goods produced in different layers of

cities is shown.4

This paper takes aim at providing a rationale for central place theory via a social plan-

ner’s problem. An innovative feature of this paper is that the social planner’s problem is

formulated as a dynamic programming problem in a geographic space (instead of in time).

In this paper, we ask what optimal city hierarchy would arise from a uniformly populated

space via the tradeoff between transportation costs and the fixed costs of production. To

2On the plane, if there is always only one next-layer city located in the equilateral triangle area in
between three neighboring larger cities, then the ratio of the market areas is 3.

3Courtesy of Paul Thompson and the Wolf at the Door website. This graph can be downloaded from
http://wolf.readinglitho.co.uk/mainpages/sustainability.html.

4The total range of the goods indexed by fixed cost of production y is [0, ȳ]. The hierarchy property
implies that each city provides goods in [0, y] for some y. Hence, a layer-i city provides goods in [0, yi],
and, obviously, y1 = ȳ.
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the best of our knowledge, Quinzii and Thisse (1990) is the only other paper that asks

how a central place hierarchy emerges from a socially optimal solution. Although Quinzii

and Thisse (1990) provide the conditions under which the hierarchy property emerges in

the optimal solution, their optimal solution does not feature the central place property. In

contrast, the focus of this paper is on whether and how the central place property emerges

conditional on the hierarchy property. To put it in more general terms, this paper does

not ask why firms agglomerate or why cities exist; instead, it asks whether, and if yes,

why, the spacing in central place theory is optimal.

The two main contributions of this paper are as follows. First, it shows a sufficient

condition under which the central place property emerges conditional on the hierarchy

property. This condition applies to both spaces of the line and the plane. Second, the

paper provides two results for the efficiency properties of the equilibrium hierarchy (on the

line) modeled in Hsu (2008). Using a one-good model, Lederer and Hurter (1986) show

that equilibrium entry is socially optimal. Here, in an extension to a continuum of goods,

we show that the optimal solution can be decentralized if the central place property holds.

However, other suboptimal equilibria also exist. With regard to the welfare properties

of equilibrium entry in a spatial competition model, Salop (1979), also using a one-good

model, shows that there is always greater equilibrium entry than what is optimal. Here,

we show that when the distance between the two largest cities is the same between the

equilibrium and optimal solution, then the equilibrium and optimal entries for each good

coincide. However, in contrast to Salop (1979), we also show that when equilibrium entry

deviates from the socially optimal solution, the directions of deviation for different goods

are different.

The extension to the plane utilizes Morgan and Bolton’s (2002) theorem that the

hexagonal market area is most efficient in terms of saving on transportation cost, given

the number of cities. Hence, conditional on the hierarchy property, we successfully rebuild

the central place hierarchy on the plane as per Christaller (1933) and prove Christaller’s

conjecture that the market principle (the ratio of the market areas of one layer to the

next being 3) is the most efficient way of organizing the hierarchy.

The central place hierarchy in this paper shares the same structure as that in Hsu

(2008), who has shown that, under a rather general class of the distribution functions of

fixed costs, this hierarchy leads to Zipf’s laws for cities5 and firms, as well as to a newly

5Beckmann (1958) has shown that Zipf’s law for cities may be the result of a hierarchical structure.
However, he does not provide a microfoundation for this structure, and his conditions are different from
those of Hsu (2008).
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documented empirical regularity called the Number-Average-Size (NAS) rule.6 Unlike

other theories of urban systems and city size distribution, our explanation of city size

distribution is based on what cities do differently and how things occur geographically,

rather than on a statistical property that arises from the random growth process of cities

with no inter-city spatial relations.7 Moreover, Mori, Nishikimi, and Smith (2008) have

shown that if the hierarchy property holds, then the NAS rule and Zipf’s law are essentially

equivalent. Hence, central place theory provides a key connection between two empirical

regularities, and other urban theories, i.e., those without different industries or without

the hierarchy property, have little explanatory power in this regard.8 In a broad sense,

the reason that the central place hierarchy leads to these power-law related regularities is

that it is close to a spatial fractal structure. For those readers interested in more details

on Zipf’s law, the NAS rule, the hierarchy property, and the relationships among them,

see Hsu (2008).

The rest of this paper is organized as follows. Section 2 lays out the social plan-

ner’s problem on the line and derives the central place property. Section 3 retrieves the

necessary results from Hsu (2008) and carries out a welfare analysis. Section 4 extends

the model to the plane and shows that the central place property still holds. Section 5

concludes.

2 Social Planner’s Problem

2.1 Model setup

The geographic space is the real line on which consumers are uniformly distributed.9

There is a continuum of commodities labeled x ∈ [0, z1], and each consumer demands one

6Zipf’s law states that the size distribution of cities can be approximated by the Pareto distribution
with a tail index close to 1, and the NAS rule states that the number and average size of cities in which an
industry is located have a log-linear relationship. For evidence on Zipf’s law for firms, see Axtell (2001)
and Luttmer (2007). Also see Luttmer (2007) for a theoretical explanation.

7For explanations along this line, see Simon (1955), Gabaix (1999), Eeckhout (2004), Duranton (2006,
2007), Rossi-Hansberg and Wright (2007), and Córdoba (2008).

8For example, Henderson’s (1974) type-of-cities theory and its extension in Rossi-Hansberg and Wright
(2007) do not feature the hierarchy property, as they are concerned with the specialization of cities and
assume that each city specialize in only one industry.

9We can think of these consumers as farmers who would locate themselves uniformly if agricultural
productivity were uniform all over the plane and if the farming technology were Leontief in land and
labor.
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unit of each x ∈ [0, z1]. To produce any good x, a fixed cost φ(x) is required. The marginal

cost is a constant c. Rank the goods in terms of their fixed costs, and assume that no

two goods have the same fixed cost. With differentiability of φ, φ′(.) > 0. To transport

any good requires a cost of t per unit of distance. Assume the hierarchy property: at any

location, if z is produced, then all x ∈ [0, z] are also produced.

2.2 The problem

The social planner’s problem is to find the optimal allocation of production locations to

minimize the per capita cost. We can ignore the variable cost per capita, as it must be

cz1, regardless of the allocation. Imagine now that social planner has to decide how to

place the production locations for the goods [0, z], where z > 0 is arbitrary. Due to the

hierarchy property, there must be locations that produce all x ∈ [0, z], and they must be

evenly spaced to save on transportation costs. Let the distance between these “cities”

with [0, z] (z-cities hereafter) be denoted as 2L. Hence, L is the radius of the market area.

If the social planner does nothing else, then the total cost (the sum of transportation and

fixed costs) per capita must be

1

2L
[Φ(z) + ztL2] ≡ Cf (L, z),

where Φ(z) =
∫ z

0
φ(x)dx is the total fixed costs incurred in a z-city.

However, the social planner also contemplates the possibility of having some z′-cities

in between two z-cities (0 < z′ ≤ z) so that the cost of transporting these less heavy

goods [0, z′] can be saved. Having such smaller z′-cities is desirable when the total fixed

costs incurred for these goods are not too large. Hence, given z > 0 and L > 0, the social

planner solves the following dynamic programming problem.

(FEf)

C(L, z) = min{Cf (L, z), min
n′,z′

1

2L
[Φ(z)− Φ(z′) + (z − z′)tL2] + C(L′, z′)}

s.t. L′ =
L

n′ + 1
, n′ ∈ N, z′ ∈ [0, z].

where n′ is the number of z′-cities placed in between two z-cities. This is the core problem

that the social planner must solve for any z, L > 0. Once this problem has been solved,

she can solve the optimal radius for the z1-cities:

L1 = arg min
L

C(L, z1).
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Figure 3: City Planting

In sum, the social planner’s problem is a recursive city planting problem in which

the planner first chooses the radius for the z1-cities, which are the first-layer cities, and

then she decides how many second-layer cities (n2 z2-cities) to plant in between, and this

occurs recursively. An example of recursive city-planting is illustrated in Figure 3, in

which n2 = 3 and n3 = 2.

2.3 Characterization

Denote the policy function for the choice of n′ solving the sub-problem of (FEf ) as g(L, z).

The policy function for z′ of the sub-problem is a simple rule given by

z′o = φ−1

(
tL2

n′ + 1

)
= φ−1

(
tL2

g(L, z) + 1

)
. (1)

We arrive at this rule by combining the first-order condition (2) and the envelope condition

(3) of the sub-problem:10

∂C( L
n′+1

, z′o)

∂z
=

1

2L
[φ(z′o) + tL2], (2)

∂C(L, z)

∂z
=

1

2L
[φ(z) + tL2]. (3)

Barring a choice of Cf (L, z) in (FEf ), the policy function g determines the sequence

of ni = g(Li−1, zi−1), i ≥ 2, and hence Li = Li−1/(ni + 1) and

zo
i = φ−1

(
tL2

i−1

ni + 1

)
. (4)

10The second-order condition is easy to check, and it holds because φ′(.) > 0.
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Obviously, {zi} and {Li} are decreasing sequences. Whenever the social planner

chooses Cf (L, z), given LI , zI for some integer I ≥ 1, then I becomes the number of

layers in the city hierarchy. However, it turns out that one simple condition, φ(0) = 0,

guarantees infinite layers and hence a cleaner form of the dynamic programming problem:

(FE)

C(L, z) = min
n′,z′

1

2L
[Φ(z)− Φ(z′) + (z − z′)tL2] + C(L′, z′)

s.t. L′ =
L

n′ + 1
, n′ ∈ N, z′ ∈ [0, z].

Proposition 1 (Infinite layers). Suppose φ(0) = 0, the first term in the objective (Cf (L, z))

of (FEf) is never the optimal choice for any pair of L and z. Hence, there are infinitely

many layers. If φ(0) > 0, then there are only I layers, and I is the largest integer such

that

tL2
I−1

nI + 1
≥ φ(0). (5)

Proof. Given n′ = g(L, z) and φ(0) = 0, z′o(n′) = φ−1
(

tL2

n′+1

)
always exists. The sub-

problem in (FEf) becomes

min
n′≥1

1

2L

∫ z

z′o(n′)
[φ(x) + tL2]dx + C

(
L

n′ + 1
, z′o(n′)

)

=Cf (L, z) + min
n′≥1

C

(
L

n′ + 1
, z′o(n′)

)
− 1

2L

∫ z′o(n′)

0

[φ(x) + tL2]dx. (6)

In fact,

min
n′≥1

C

(
L

n′ + 1
, z′o(n′)

)
− 1

2L

∫ z′o(n′)

0

[φ(x) + tL2]dx

≤min
n′≥1

n′ + 1

2L

∫ z′o(n′)

0

[
φ(x) +

tL2

(n′ + 1)2

]
dx− 1

2L

∫ z′o(n′)

0

[φ(x) + tL2]dx

= min
n′≥1

n′

2L

∫ φ−1
(

tL2

n′+1

)

0

[
φ(x)− tL2

n′ + 1

]
dx < 0.

Hence, Cf (L, z) is never the optimal choice. If φ(0) > 0, then the decreasing nature of

Li implies that (4) holds only for a finite number of i’s. Given any sequence of {ni}∞i=2,

consider the largest integer I such that (5) holds. Then, φ(0) > tL2
I/(nI+1 + 1). Given

L = LI and z = zI , the social planner will choose Cf (L, z), and hence the city planting
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stops. This is because, given LI and zI , for any nI+1 = n′ ∈ N, the optimal choice in the

sub-problem must be zI+1 = z′o = 0, which is equivalent to choosing Cf (L, z). To see

this, simply observe that, for all z′ ∈ [0, zI ], the first-order derivative of the second term

in (FEf) is

n′

2L
[φ(z′)− tL2

n′ + 1
] ≥ n′

2L
[φ(0)− tL2

n′ + 1
] =

nI+1

2LI

[φ(0)− tL2
I

nI+1 + 1
] > 0.

It is also useful to define an equivalent sequence problem as follows.

(SP )

C(L, z) = min
{ni,zi}I

i=2

I+1∑
i=2

1

2Li−1

[Φ(zi−1)− Φ(zi) + (zi−1 − zi)tL
2
i−1]

s.t. Li =
Li−1

ni + 1
, ni ∈ N, zi ∈ [0, zi−1] ∀ i ≥ 2,

L1 = L, z1 = z,

where the number of layers I is given by Proposition 1, and if I is finite, then zI+1 = 0.

2.4 Central place property

It is difficult to solve the sequence of {ni}∞i=2 without assuming a functional form. There-

fore, we focus on the two prototypes of the class of fixed cost requirement functions in Hsu

(2008) that lead to Zipf’s law. These are the power function (φ(x) = abxb−1, a > 0, b > 1)

and the exponential function (φ(x) = aebx, a > 0, b > 0). The exponential function is, in

fact, the limit of the power function.11 The exponential function case is difficult to solve

analytically because it allows only finite layers. The solution for this case is thus obtained

by solving the problem numerically. The power function, in contrast, has φ(0) = 0 and

gives infinite layers. It can be solved analytically using the guess-and-verify technique.

Proposition 2 (Central place property). Assume that the fixed-cost requirement function

is φ(x) = abxb−1, a > 0, b > 1, and hence Φ(z) = azb. Then, n′o = 1, ∀L, z > 0.

11Hsu (2008) uses the inverse of the fixed cost function, that is, the distribution function of the fixed
costs. In Proposition 3 in Hsu (2008), when the density function takes the exponent of α = 0, it
corresponds to the exponential function in this paper, and when α > 0, it corresponds to the power
function.
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Proof. The complete proof is given in the Appendix, and a sketch is provided here. With

the assumption of φ(.), (4) becomes

zo
i =

(
tL2

i−1

ab(ni + 1)

) 1
b−1

. (7)

By plugging (7) into (SP ), the problem is reduced to finding the optimal sequence of

{ni}∞i=2. We guess that no
i = 1 in (SP ) to obtain a guess for the functional form of C.

By applying the guess-and-verify technique to (FE), we verify that the unique optimal

solution is, indeed, no
i = 1 for all i.

Next, we show the solution to the exponential function case. Define φ(x) = aebx, a >

0, b > 0. By applying (4), we have

zo
i =

1

b
ln

tL2
i−1

a(ni + 1)
.

There are only finite layers, as φ(0) > 0.12 By Proposition 1, given any {ni}K
i=2, I < K

is determined as the largest integer satisfying zI ≥ 0. Find the solution using (SP ) is

quick. For {ni}K
i=2, we simply try out all of the elements in the set of {1, 2, ..., n̄}K−1 with

(SP ). We need K to be large enough such that there exists an I < K. We also need

n̄ to be large to ensure that the solution is correct. The solution is again no
i = 1 for all

2 ≤ i ≤ I, for extensive parameter values.13

2.5 Zipf’s law for cities and the NAS rule

The central place property and (4) imply that zi = φ−1(
tL2

1

22i−3 ). Denote yi as the fixed cost

of zi; then

yi ≡ φ(zi) =
tL2

1

22i−3
, (8)

12One may wonder whether there perhaps exists a variant of the exponential fixed cost requirement
function with φ(0) = 0, and hence we can utilize the stationarity. However, the empirical relevance of such
a variant is weak. For example, take φ(x) = aebx− a; this function gives infinite layers and, according to
Hsu (2008), an approximate Pareto distribution with a tail index of 1/3. However, the lowest estimated
tail index among the 73 countries examined by Soo (2005) is in Australia, which has a tail index of 0.5855
and only 21 cities.

13A Matlab code that computes the solution can be obtained from the authors upon request.
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which is exactly the zero-profit condition that pins down the cutoff fixed cost for each layer

in Hsu (2008).14 Therefore, the city hierarchies in both papers share the same structure.

The only difference between an optimal solution and an equilibrium may be the radius of

the market area of layer-1 cities, L1. However, as is clear in Hsu (2008), the magnitude

of L1 does not matter in the proof of Zipf’s law or the NAS rule. Hence, both empirical

regularities also emerge from the optimal solution.

3 Welfare Analysis

The environment of Hsu’s (2008) model is the same as that in this paper. Thus, we can

compare the equilibrium allocation in his model with the optimal solution presented here.

In the firm-entry part, Hsu (2008) has an infinite pool of firms that play the following

two-stage game.15

1. Entry and location stage:

Firms simultaneously decide whether to enter, and, upon entering, they must decide

their locations. They need to pay a fixed cost to set up at any location. Assume

the tie-breaking rule that if a potential firm sees a zero-profit opportunity, then it

enters.

2. Price competition stage:

Firms deliver goods to farmers. Given the locations of firms, each firm sets a (de-

livered) price schedule over the real line. For each good, each location on the real

line is a market in which firms engage in Bertrand competition. For each good, each

farmer decides which firm to buy from.

Hsu (2008) focuses on a set of equilibria that are consistent with the hierarchy property,

i.e., the hierarchy equilibria. Proposition 1 in Hsu (2008) provides the characterization

of this set. Briefly, there is a continuum of hierarchy equilibria, each of which satisfies

the central place property. By this property, the market area of cities shrinks by half

from one layer to the next, and the top good in each layer has fixed cost {yi}I
i=2 as given

by the zero-profit condition (8). There is a continuum of hierarchy equilibria because

the subgame perfect Nash equilibrium of top good z1 allows a continuum of equilibrium

14Note that, in Hsu (2008), L denotes the length of the market area, rather than the radius. With this
understanding, the zero-profit condition in Proposition 1 in Hsu (2008) is exactly yi = tL2

22i−3 .
15This game setup first appeared in Lederer and Hurter (1986).
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radius. More specifically, L1 ∈ [L[z1], 2L[z1]), where L[z1] is the zero-profit radius given

by

L[z1] =

√
φ(z1)

2t
. (9)

The key questions in this section are whether the social planner’s solution can be

decentralized, and, if there is a discrepancy between an equilibrium and the optimal

solution, what the pattern of deviation in terms of entry is. We present two major

findings in this section.

First, we show that, if the central place property holds, the optimal solution can be

decentralized. Including the power and exponential functions, any functional form giving

rise to the central place property entails a decentralizable solution. Second, also condi-

tional on the central place property, the entry comparison yields a result that, whenever

there is a discrepancy between the equilibrium and the optimal solution, there is a “choppy

pattern,” which means that the whole range of goods can be partitioned into sets, such

that the first set has an equilibrium entry that is less (more) than that in the optimal

solution, the second set has one that is more (less), the third set less (more), and the

fourth set more (less), etc. This result contrasts Salop’s (1979) finding that equilibrium

entry is always more than optimal in his one-good model.

3.1 Decentralization or not

In this section, we assume that the central place property holds.

The value function (or indeed the cost function) C(L, z) must be periodic in L. Denote

the smallest optimal radius as Lo. The value function is periodic because what can be

done at L = Lo should be done at L = 2Lo with z′ = z. Also, according to (1), z′o is

strictly increasing in L. Denote L̄(z) as the L such that z′o grows to exactly z. That is,

L̄(z) =

√
2φ(z)

t
= 2L[z], (10)

where L[z] denotes the zero-profit radius of z defined similarly to (9). Obviously, C(L̄(z), z) =

C(L̄(z)/2, z). Moreover, as L is in the right neighborhood of L̄(z) (L ≥ L̄(z)), the problem

becomes the same as that with L̃ = L/2 ≥ L̄(z)/2, where L̃ denotes the effective market

area of z since now z′o = z. Hence, C(L, z) = C(L/2, z) for L ∈ [L̄(z), 2L̄(z)).

Now, let z = z1 and Lu ≡ L̄(z1). The generalization to the discussion above is that

for any k = 0, 1, 2, ..., and for any L ∈ [2k−1Lu, 2
kLu), we have zk+1 = zk = ... = z2 = z1,

12



and the effective radius is given by L̃ = L/2k. Therefore, the value function C(L, z1) is

periodic in the sense that C(L, z1) = C(L̃, z1) = C(L/2k, z1), for L ∈ [2k−1Lu, 2
kLu).

It is now clear that we only need to focus on the optimal radius Lo
1 that solves

Lo
1 = arg min

0<L<Lu

C(L, z1). (11)

A solution to (11) must exists because limL→0 C(L, z1) = ∞ and C(Lu, z1) = C(Lu/2, z1).

To investigate decentralization, first note that (8) denotes both the optimal and equilib-

rium top good of each layer, given L1. However, the equilibrium layer-1 radius may be

different from that of the optimal one, and we denote

zo
i =φ−1

(
tLo2

1

22i−3

)
, (12)

z∗i =φ−1

(
tL∗

2

1

22i−3

)
, (13)

where superscripts o and ∗ denote the allocation in the optimal solution and in a hi-

erarchy equilibrium, respectively. Thus, an optimal solution can be decentralized if

Lo
1 ∈ [L[z1], 2L[z1]).

Proposition 3 (Decentralization). Suppose that the central place property holds. Then,

Lu/2 ≤ Lo
1 < Lu. Hence, Lo

1 ∈ [L[z1], 2L[z1]).

Proof. We know from our previous discussion that Lo
1 < Lu. To see that Lu/2 ≤ Lo

1,

assume the contrary is true, that is, assume Lu > 2Lo
1. Note that C(2Lo

1, z1) = C(Lo
1, z1),

and when L1 = 2Lo
1, zo

2 = z1. However, the strictly increasing nature of φ implies that the

Lu, the value of L1 such that zo
2 grows to exactly z1, must be unique, and hence 2Lo

1 = Lu,

which contradicts the assumption that we started with.

Figure 4 depicts a typical shape of C(L, z1) for L < Lu when φ is a power function.

3.2 Entry comparison

Conditional on the central place property, there are still equilibria that are suboptimal.

The following proposition states that, whenever an equilibrium allocation is suboptimal,

the entry comparison for all goods exhibits a choppy pattern. In the following proposition,

it is convenient to consider that k = 0. Figure 5 illustrates such a case where L∗1 > Lo
1.

Proposition 4 (Choppy Pattern). Provided that no
i = 1, the following holds.
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C(L,    )   z1

L1 Lu
Lu

2

L
0

Figure 4: A Typical Value Function on L < Lu(z).

1. If L∗1 = Lo
1, then entry for each good is identical in both the equilibrium and the

optimal solution.

2. If L∗1 > Lo
1, then there exists some k ∈ {0, 1, 2, ...} such that L∗1 ∈ (2kLo

1, 2
k+1Lo

1].

(a) zo
i+1 < z∗i+1+k ≤ zo

i for all i ≥ 1. The [0, z1] continuum can be partitioned into

the sets of the form (z∗i+1+k, z
o
i ] and (zo

i+1, z
∗
i+1+k]. Running index i from 1 to

I − 1 completes the partition.

(b) For all i ≥ 1 and for all z ∈ (zo
i+1, z

∗
i+1+k], equilibrium entry is weakly more

than the optimal one.

(c) For all i ≥ 1 and for all z ∈ (z∗i+1+k, z
o
i ], equilibrium entry is less than the

optimal one.

3. If L∗1 < Lo
1, then there exists some k ∈ {0, 1, 2, ...} such that Lo

1 ∈ (2kL∗1, 2
k+1L∗1].

The result in (b) holds with the superscripts of o and ∗ exchanged.

Proof. See the Appendix.

4 Extension to the plane

The only change to the model setup is that the geographic space becomes the infinite

plane.
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*
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3L1
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z2

o
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o

z3

o

z2

o

Figure 5: This graph illustrates the entry comparison in the case of Lo
1 < L∗1 < 2Lo

1. The

words “the same/more/less” mean that the equilibrium entry is the same/more/less than

the optimal one.

4.1 Hexagonal market areas

Section 2 models the central place hierarchy on the line, but this leaves out the fascinating

feature of Christaller and Lösch’s central place theory, which is that, on the plane, the

market areas are hexagons. Lösch (1940) provided a suggestive, but not rigorous, proof

for hexagonal markets being the most efficient for distributing goods to consumers. Many

later writers pointed out certain problems in Lösch’s proof and tried to improve upon it.

However, it was not fully proved until Morgan and Bolton (2002) in the sense that they

proved that the result holds on the infinite plane without any additional assumptions with

regard to the limit of the edge effect of a finite plane approaching infinity.

The settings in Morgan and Bolton (2002) are exactly the same as those in this paper

except that they consider only one good. Thus, for any good, the efficient market areas

are equal-sized hexagons, and, when the goods are stratified in this paper, the lattices

of the hexagonal market areas are those described by Christaller (1933). Interestingly, it

turns out that one can make a heuristic derivation of hexagonal market areas by properly

defining “even spacing” on the plane and observing that such even spacing results in

hexagonal market areas.

Focus on the market area of any particular good. Given the production locations of

this good, the market areas are necessarily convex polygons, as each consumer is assigned

to the nearest location. For any location, define its neighboring locations as those with

15



which the market areas have parts of their borders in common. Define “even spacing” as

the spacing by which any location is an equal distance away from its neighboring locations.

It turns out that the only even spacing is constructed in the following way. Without loss of

generality, place the production locations evenly on the x-axis of the xy plane with some

distance 2L. From each of these production locations, place more production locations

evenly with 2L along the 60◦ and −60◦ rays. Assign each point (consumer) on the plane

to its nearest production location, and the market areas are then regular hexagons.16

4.2 Central place property

Let L be the radius of a circle inscribed in a hexagon. Then, the total transportation cost

for delivering goods [0, z] to the consumers in the hexagon with L is

z(4 + ln 27)t

3
L3 ≡ zτL3.

The market area is 2
√

3L2. Thus, the total cost (excluding the variable costs) per capita

for goods [0, z] with a radius of L is

1

2
√

3L2

[
Φ(z) + zτL3

] ≡ CP
f (L, z).

Similar to our discussion in Section 2, given L > 0 and z > 0, the dynamic programming

problem is defined by

(FEP
f )

C(L, z) = min{CP
f (L, z), min

n′,z′

1

2
√

3L2
[Φ(z)− Φ(z′) + (z − z′)τL3] + C(L′, z′)}

s.t. L′ =
L
√

3
n′ , n

′ ∈ N, z′ ∈ [0, z].

Here, the superscript P refers to the “plane,” and L′ = L/
√

3
n′

is derived from the

fact that the even spacing of cities necessarily requires that city planting occur on the

16Another way to check this is based on the fact that the only regular polygons that partition the
plane are equal-lateral triangles, squares, and hexagons. However, triangles and squares do not give even
spacing. For example, take any production location in the case of squares. For any square and its center,
there are eight squares neighboring it, including those that only touch its border at the corners. The
centers of the four neighboring squares that touch the corners are actually farther away than those that
touch the sides.

16



hexagonal lattices. That is, given any hexagonal lattice of cities, the locations to plant

the “next-layer” smaller cities must be at the points of a finer hexagonal lattice.

Similar first-order and envelope conditions give

z′o = φ−1

( √
3

n′ − 1

(3
√

3)n′ −√3
n′ τL3

)
. (14)

The policy function for n′ is similarly defined, and that for z′ is given by (14). There is

also a parallel proposition to Proposition 1. To save space, we do not repeat the proof

here. Hence, assuming φ(0) = 0, we have

(FEP )

C(L, z) = min
n′,z′

1

2
√

3L2
[Φ(z)− Φ(z′) + (z − z′)τL3] + C(L′, z′)

s.t. L′ =
L
√

3
n′ , n

′ ∈ N, z′ ∈ [0, z].

Similar to Section 2, we show the result that the central place property holds if φ is a

power function.

Proposition 5 (Central place property). Assume that the fixed-cost requirement function

is φ(x) = abxb−1, a > 0, b > 1, and hence Φ(z) = azb. Then, n′o = 1, ∀L, z > 0.

Proof. The procedure of the proof is the same as that for Proposition 2. The complete

proof is given in the Appendix.

Any three neighboring cities must form an equilateral triangle. Thus, the city planting

process can be thought of as the placing of smaller cities in each such triangular area. As

previously mentioned, the only even-spacing method is to place the smaller cities at the

lattice points of a finer hexagonal lattice. In this way, the possible number of cities that can

be planted in such a triangular area is m = 1, 3, 12, 36, ..., and these numbers correspond

to n′ = 1, 2, 3, 4, .... Suppose the social planner were to plant m = 2, 4, 5, etc., cities;

then, the even-spacing principle could not hold. Presumably, the social planner could

figure non-even spacing to minimize the transportation cost. A reasonable conjecture is

that such minimization could not beat, for some g(m), the solution of

C(L, z) = min
n′,z′

1

2
√

3L2
[Φ(z)− Φ(z′) + (z − z′)τL3] + C(L′, z′)

s.t. L′ =
L

√
3

g(m)
,m ∈ N, z′ ∈ [0, z],
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where g(m) is strictly increasing and satisfies g(1) = 1, g(3) = 2, g(12) = 3, g(36) = 4, ...

If the foregoing conjecture is true, then the optimal solution is m = 1, which is still the

central place property. As shown in the proof of Proposition 5, the objective function

in (FEP ) is strictly increasing in n′ ≥ 1 even if n′ is treated as a real number. Hence,

n′ = g(m) = 1 defines the optimal m.

5 Conclusion

This paper presents a social planner’s problem with regard to the spacing of different

layers of cities and the ranges of goods produced in each layer. The model formalizes

central place theory via an efficiency rationale. It takes the hierarchy property as given

and provides the conditions for the central place property. In this sense, this paper

complements Quinzii and Thisse (1990), who model the hierarchy property. It remains to

be seen whether the optimality of both properties can be obtained in one concise model.

Our formulation uses a dynamic programming approach, which, to the best of our

knowledge, is the first time that such a technique has been applied to economic geography.

The central place property is proved by the guess-and-verify technique of a dynamic

programming problem, using a power fixed-cost requirement function. As shown in Hsu

(2008), this functional form is the prototype of the class of functions leading to Zipf’s law

and the NAS rule under a central place hierarchy. It is interesting to note that the power

function makes the city hierarchy an exact spatial fractal structure, which leads to the

power-law size distribution.

A comparison of the equilibrium allocation in Hsu (2008) with the optimal solution

is made, and a sufficient condition for an optimal solution to be decentralizable is simply

the central place property. The central place property is also shown to hold on the infinite

plane, and thus, the city hierarchy is fully that of Christaller (1933).

Appendix: Proofs

Proof of Proposition 2

Proof. With the assumption of φ(.), (4) becomes (7). By plugging (7) into (SP ), the

problems are reduced to finding the optimal sequence of {ni}∞i=2. The optimal solution of

ni = 1 for all i can be proved using (FE) by the guess-and-verify technique. We obtain

the guess of the functional form, denoted as C0(L, z), by plugging the guess of ni = 1 into
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(SP ). This guess is

C0(L, z) =
1

2L
[azb + ztL2]− 2

b−2
1−b

2
b+1
b−1 − 1

a
1

1−b t
b

b−1 (b
1

1−b − b
b

1−b )L
b+1
b−1 .

Use (FE) to define C1 by the following mapping.

C1(L, z) = min
n′∈N

1

2L

[
Φ(z)− Φ

((
tL2

ab(n′ + 1)

) 1
b−1

)
+

(
z −

(
tL2

ab(n′ + 1)

) 1
b−1

)
tL2

]

+ C0

(
L

n′ + 1
,

(
tL2

ab(n′ + 1)

) 1
b−1

)
. (15)

It is readily verified that C1 = C0 if n′ = 1. Thus, what remains is to show that

n′o = g(L, z) = 1 for all L, z.

Denoting the objective function in (15) as R̃(n′), a few algebraic manipulations give

dR̃(n′)
dn′

=
b

1
1−b − b

b
1−b (n′ + 1)

2b
1−b

(2
b+1
b−1 − 1)(b− 1)

[(2
b+1
b−1 − 1)(n′ + 1)

1
b−1 (n′ + 1− b) + 2

1
b−1 (b + 1)]. (16)

If dR̃(n′)
dn′ > 0 for all n′ ∈ N, then the optimal solution of n′ is 1. Denote the term in the

brackets in (16) as D(n′). dR̃(n′)
dn′ > 0 for all n′ ∈ N if and only if D(n′) > 0 for all n′ ∈ N.

In fact,

dD(n′)
dn′

=
2

b+1
b−1 − 1

b− 1
bn′(n′ + 1)

2−b
b−1 > 0, ∀n ∈ N.

Therefore, if we can show that D(1) > 0, we are done.

Define E(b) = 2
1

1−b D(1). Thus,

E(b) = 2
b+1
b−1 (2− b) + 2b− 1.

Recall that b > 1. Thus, E(b) > 0 if b ≤ 2. Consider b > 2 and define a new variable

w ≡ b+1
b−1

; then

E(b) ≡ H(w) =
1

w − 1
[2w(w − 3) + w + 3].

Note that 1 < w < 3, as b > 2. It can be verified that H(w) > 0 for 1 < w < 3. Hence,

E(b) > 0 for all b > 1, and thus D(1) > 0 for all b > 1.
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Proof of Proposition 4

Proof. The first point becomes trivial by inspecting (12) and (13). The proof for Point

3 is the same as that for Point 2 with the superscripts of o and ∗ exchanged. For (a) of

Point 2, first note that L∗1 ∈ (2kLo
1, 2

k+1Lo
1] implies

φ−1

(
tLo2

1

22i−1

)
< φ−1

(
tL∗

2

1

22(i+k)−1

)
≤ φ−1

(
tLo2

1

22i−3

)
.

Hence, zo
i+1 < z∗i+1+k ≤ zo

i . Running index i from 1 to I − 1 completes the partition of

[0, z1]. Now, consider (b) in Point 2. The distances between any two neighboring locations

of z satisfy the following inequality.

L∗z =
L∗1
2i+k

≤ 2k+1Lo
1

2i+k
=

Lo
1

2i−1
= Lo

z,

which implies that the equilibrium entry is more than optimal if L∗1 < 2k+1Lo
1 and is equal

to the optimal entry if L∗1 = 2k+1Lo
1. Similarly, for (c) in Point 2, the distance between

any two neighboring locations of z satisfies the following inequality.

L∗z =
L∗1

2i+k−1
>

2kLo
1

2i+k−1
=

Lo
1

2i−1
= Lo

z,

which implies that the equilibrium entry is less than optimal.

Proof of Proposition 5

Proof. Similar to Section 2, we can define a sequence problem as follows.

(SP P )

C(L, z) = min
{ni,zi}∞i=2

∞∑
i=2

1

2
√

3L2
i−1

[Φ(zi−1)− Φ(zi) + (zi−1 − zi)τL3
i−1]

s.t. Li =
Li−1√

3
ni

, ni ∈ N, zi ∈ [0, zi−1] ∀ i ≥ 2,

L1 = L, z1 = z.

With the assumption of φ(.), (14) becomes

z′o =

(
τL3

ab

√
3

n′ − 1

(3
√

3)n′ −√3
n′

) 1
b−1

, (17)
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or,

zo
i =

(
τL3

i−1

ab

√
3

ni − 1

(3
√

3)ni −√3
ni

) 1
b−1

. (18)

By plugging (18) into (SP P ), the problem is reduced to finding the optimal sequence of

{ni}∞i=2. The optimal solution of ni = 1 for all i can be proved using (FEP ) by the guess-

and-verify technique. We obtain the guess of the functional form, denoted as C0(L, z), by

plugging the guess of ni = 1 into (SP P ). When ni = 1, (18) becomes

zi = κL
3

b−1

(
1

3
√

3

) i−2
b−1

, (19)

where κ =
(

(
√

3−1)τ

2
√

3ab

) 1
b−1

. The guess is

C0(L, z) =
1

2
√

3L2

[
azb − aκbL

3b
b−1 +

(
z − κL

3
b−1

)
τL3

]

+

√
3κL

b+2
b−1

2(
√

3
3b

b−1 − 3)

[
aκb

(√
3

3b
b−1 − 1

)
+ κτ

(√
3

3
b−1 − 1

)]
.

With z′o(n′) given by (17), use (FEP ) to define C1 by the following mapping.

C1(L, z) = min
n′∈N

1

2
√

3L2

[
Φ(z)− Φ(z′o(n′)) + (z − z′o(n′))τL3

]
+ C0

(
L
√

3
n′ , z

′o(n′)

)
.

(20)

It can be verified that C1 = C0 if n′ = 1. Thus, what remains is to show that n′o =

g(L, z) = 1, for all L, z. Denote the objective function in (20) as R̃(n′). If dR̃(n′)
dn′ > 0 for

all n′ ≥ 1, then the optimal solution of n′ is 1.

With some algebraic manipulations,

dR̃(n′)
dn′

=
d

dn

( √
3

n′ − 1

(3
√

3)n′ −√3
n′

)( √
3

n′ − 1

(3
√

3)n′ −√3
n′

) 2−b
b−1

×

n′3n′

6
√

3

√
3

(2−b)n′
b−1 (

√
3

n′
+ 1)

b
b−1

(2 +
√

3
−n′

) ln 3

(
1

ab

) 1
b−1

τ
b

b−1 L
b+2
b−1 E(n′),

where

E(n′) =

(
3n′ +

√
3

n′
) 1

1−b

(3
√

3)n′
− 2

b

(
1

3n′ +
√

3
n′

) b
b−1

+
b + 2

2
1

b−1 b(
√

3
b+2
1−b − 1)

(
3−√3

3n′+1
√

3
n′

) b
b−1

.
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As d
dn

( √
3

n′−1

(3
√

3)n′−√3
n′

)
< 0, dR̃(n′)

dn′ > 0 if and only if E(n′) < 0.

E(n′) can be further written as E(n′) = 1

(3
√

3)n′ (3n′+
√

3
n′

)
1

b−1
F (n′). And, we have

dF (n′)
dn′

= −
(

n′

2
3−

n′
2
−1 + n′3−n′−1

)

 2× 32n′

b(
√

3
n′

+ 1)2
− b + 2

b− 1

(
3−√3

3

) b
b−1

(
3−

n′
2 + 3−n′

) 2−b
b−1

2
1

b−1 b(1−√3
b+2
1−b )


 .

It can be verified that for all b > 1,

F (1) = 1− 3
√

3− 3

b
− b + 2

b

3
2b−1

2(b−1) − 3
b

2(b−1)

3
b+1
b−1 − 3

b
2(b−1)

< 0.

Hence, if the term in the bracket of dF (n′)
dn′ is positive for all n′ ≥ 1, then F (n′) < 0 and

E(n′) < 0 for all n′ ∈ N, and we are done. To see that F (1) < 0, note that, with w ≡ b+2
b−1

,

F (1) < 0 ⇐⇒b− 3
√

3 + 3

b + 2
<

√
3− 1

√
3

b+2
b−1 − 1

⇐⇒f(w) ≡ w + 3
√

3− 1− [(4− 3
√

3)w + 3
√

3− 1]
√

3
w

> 0.

Also note that b ∈ (1,∞) implies that w ∈ (1,∞). It is easy to verify that f(1) = 0 and

f ′(w) > 0 for all w > 1. Hence, f(w) > 0 for all w > 1.

Because 3n′
√

3
n′

+1
is strictly increasing in n′, the term in the bracket of dF (n′)

dn′ is positive

for all n′ if

(
3√

3 + 1

) b
b−1

>
b + 2

b− 1

(
3−√3

6

) b
b−1

1

1−√3
b+2
1−b

.

The foregoing inequality holds if and only if

ln 3 >
2(b− 1)

3b
ln(

4b− 1

b− 1
) ≡ G(b).

Observe that limb→1+ G(b) = 0, limb→∞ G(b) = 4 ln 2
3

, and

G′(b) =
2

3b2(4b− 1)

[
ln

(
4b− 1

b− 1

)
(4b− 1)− 3b

]
≡ 2

3b2(4b− 1)
H(b).

In fact, there exists a b∗ > 1 such that H ′(b∗) = 0. Since H ′′(b) = 9
(b−1)2(4b−1)

> 0,

H(b∗) .
= 7.01 is the unique minimum. Together with the limits of G(b) at 1 and ∞, the

fact that G′(b) > 0 implies that 0 < G(b) < 4 ln 2
3

< ln 3 for all b > 1.
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